Hyperon physics in NA48

Mauro Piccini

Perugia University and INFN, Perugia, Italy

Aachen - Germany, 17-23 July 2003 HEP2003 Aachen - Germany

On behalf of the NA48/I Collaboration

Cagliari Cambridge CERN Chicago Dubna Edinburgh Ferrara Firenze Mainz Northwestern Perugia Pisa Saclay Siegen Torino Warsaw Wien

Mauro Piccini

Outline:

- ♦ The Ξ^0 beta decay
- An interesting decay to study:
 - CKM unitarity
 - Form factors and SU(3) breaking
- The opportunity to collect that decay: NA48/I
 - NA48 story
 - NA48 apparatus
 - NA48 results on hyperon physics
 - Progress report on 2002 run

conclusions

The Ξ^0 beta decay:

- Until few years ago there was a lack of data for this decay (First evidence from KTEV in 1999)
- ♦ The Ξ⁰ → Σ⁺e⁻ν_e doesn't suffer of the background from the corresponding 2 body decay (Ξ⁰ → Σ⁺π⁻)

\Rightarrow A new and good chance for:

- Form factors and BR measurement
 - \Rightarrow study of SU(3) breaking
 - $\Rightarrow V_{us}$ extraction

test of V_{CKM} unitarity

In 2002 NA48 has collected the largest world sample of events in this channel More informations from:

♦ $\overline{\Xi}^0$ beta decay (The $\overline{\Xi}^0$ should be unpolarized)

Mauro Piccini

decay mechanisms

Mauro Piccini

The sine of the Cabibbo angle V_{us} can be extracted from the following relation:

$$Rate = \frac{BR}{\tau} \propto G_{\mu}^{2} |V_{us}|^{2} |f_{1}|^{2} \left[1 + 3\left(\frac{g_{1}}{f_{1}}\right)^{2} \right]$$

Open issue: The unitarity of CKM matrix

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \simeq |V_{ud}|^2 + |V_{us}|^2 = 1$$

in fact $|V_{ub}|^2 \sim 10^{-5}$

Measured V_{us} values:

 $(V_{us})_{Ke3} = 0.2196 \pm 0.0023 \Rightarrow V_{ud}^U = 0.9756 \pm 0.0005$ $(V_{us})_{Hyp} = 0.2250 \pm 0.0027 \Rightarrow V_{ud}^U = 0.9744 \pm 0.0007$

Measured V_{ud} values:

$$(V_{ud})_{n \to pe\overline{\nu}} = 0.9728 \pm 0.0012$$

$$(V_{ud})_{nuclei} = 0.9740 \pm 0.0005$$

New measurement on Ke3 from E865 apparently removes the discrepancy, hep-ex/0305042 Mauro Piccini 18-07-2003

Within the SU(3) framework, the form factors for Ξ^0 beta decay are equal to the form factor for neutron beta decay.

Some theories explaining SU(3) breaking, give significant differences for the axial-vector form factor g_1 .

Current status:

$$\left(\frac{g_1}{f_1}\right)_{n \to pe\overline{\nu}} = 1.267 \pm 0.0035$$

$$\left(\frac{g_1}{f_1}\right)_{\Xi^0 \to \Sigma^+ e\overline{\nu}} = 1.32 \pm_{0.17}^{0.21} \pm 0.05 \qquad (KTEV)$$

No evidence for SU(3) breaking

NA48 can also measure g_2 (second class current)

Mauro Piccini

Useful variables for form factors exctraction

Due to the lack of neutrino energy we can't recostruct the Ξ^0 energy and we can't work in Ξ^0 RF.

Two RF are useful for the form factors studies:

- The Σ^+ Rest Frame
- The Q Rest Frame

Q RF is obtained boosting the measured quantities with the momentum:

 $\vec{p}_Q = \vec{p}_{\Sigma^+} + \vec{p}_e$

(overall measured momentum of the event)

Interesting quantities:

- 1) Electron energy in Σ^+ RF
- 2) Angle between electron and proton in Σ^+ RF

If we define the $\vec{p}_{\perp LAB}^{\nu}$ as: $\vec{p}_{\perp LAB}^{\nu} = -\vec{p}_{\perp LAB}^{e} - \vec{p}_{\perp LAB}^{\Sigma^{+}}$ We have two extra-quantities:

- 3) Angle between $p_{\perp Q}^{\nu}$ and electron in $Q~{\rm RF}$
- 4) Angle between $p_{\perp Q}^{\nu}$ and proton in $Q~{\rm RF}$

Mauro Piccini

The way to do it: NA48

♦ NA48, the past:

Main goal: measurement of direct CP violation $Re(\epsilon'/\epsilon) = (14.7 \pm 2.2) \cdot 10^{-4}$ (1997+1998+1999+2001 data)

Other results on $K_{\rm S}$, $K_{\rm L}~$ and neutral hyperon rare decays

NA48/I: a high sensitivity investigation of K_S and neutral hyperon decays using a modified K_S beam (2000+2002)

NA48/II: a precision measurement of charged kaon decay parameters with an extended NA48 setup (2003)

The NA48 detector

CHARGED DECAYS:

magnetic spectrometer and scintillator hodoscope ($p_T^{kick} \simeq 265 \ MeV/c$)

 $\frac{\sigma(p)}{p} \simeq 0.5\% \oplus 0.009\% \ p \ (GeV/c)$ $\sigma_{x,y}^{hit} \simeq 90 \ \mu m$ $\sigma_{x,y}^{vtx} \simeq 2 \ mm$ $\sigma_t \simeq \ 200 \ ps$

NEUTRAL DECAYS:
High granularity, quasi homogeneous
Liquid KRypton electromagnetic
calorimeter (LKR)

 $\frac{\sigma(E)}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{0.10}{E} \oplus 0.5\% \quad (GeV/c)$ $\sigma_{m_{\pi^0}} \simeq 1 \ MeV/c^2$ $\sigma_{x,y} < 1.3 \ mm$ $\sigma_t < 300 \ ps \ above \ 20 \ GeV$

Mauro Piccini

The NA48 beam characteristics

DETAIL OF THE $\rm K_S$ TARGET STATION (2002 conf.)

Mauro Piccini

Detection

 $\Xi^0 \rightarrow \Sigma^+ e^- \overline{\nu_e}$,

 $\Sigma^+ o p \pi^0$,

 $\pi^0 o \gamma\gamma$

 \Rightarrow 2 tracks and 2 photons to be detected

Mauro Piccini

The hyperon trigger

Mauro Piccini

NA48 results on hyperon physics

NA48 collaboration has already published results on hyperon physics:

 $m(\Xi^0)$ $= [1314.82 \pm 0.06(stat.) \pm 0.20(syst.)]MeV/c^2$

 $BR(\Xi^0 \to \Lambda \gamma) = [1.90 \pm 0.34(stat.) \pm 0.19(syst.)] \times 10^{-3}$

 $BR(\Xi^0 \to \Sigma^0 \gamma) = [3.14 \pm 0.76(stat.) \pm 0.32(syst.)] \times 10^{-3}$

Big improvements with KSHI run and dedicated hyperon trigger

18-07-2003

2001 run

(90 h.)

1.33

1.34

GeV/c²

Mauro Piccini

Results on $\Xi^0 \to \Sigma^+ e^- \overline{\nu_e}$: The 2002 DATA

Data collected during 89 days in 2002 More then 9000 events in the signal region (background $\sim 3.\%$)

Mauro Piccini

Electron spectrum

Mauro Piccini

Primary vertex

Mauro Piccini

kinematical quantities in the Σ^+ RF for data

Mauro Piccini

kinematical quantities in the Q RF for data

18-07-2003

Mauro Piccini

$$\Xi^0 \to \Sigma^+ \mu^- \overline{\nu_\mu}$$

In 2002 run we also collected \sim 100 events for Ξ^0 muonic decay

The sample represents the first clear evidence for this decay

Mauro Piccini

Conclusions:

- ♦ The Ξ⁰ beta decay represents a new chance for fundamental studies
- During 2002 run NA48 collected the largest world sample for this decay
- ♦ NA48 had also collected data samples to study: Ke3, ke4 and kµ3 form factors
 Ξ⁰ radiative decays asimmetry
- ♦ All the analyses are going on, soon new results!