Final measurement of ε'/ε by NA48

G.Unal, LAL-Orsay

On behalf of the NA48 Collaboration: Cagliari,Cambridge,CERN,Dubna,Edinburgh,Ferrara,Firenze, Mainz,Orsay,Perugia,Pisa,Saclay,Siegen,Torino,Vienna,Warsaw

- Direct CP violation in neutral kaon decays
- History of the ϵ'/ϵ measurement by NA48
- Analysis of the 2001 data sample
- Final result and conclusions

<u>CP violation in neutral kaon decays</u>

• <u>CP violation in mixing (« indirect »)</u>

 $K_L = K_2 + \varepsilon K_1$ $K_S = K_1 + \varepsilon K_2$ (K₁,K₂ = CP eigenstates) $|\varepsilon| = (2.28 \pm 0.02)10^{-3}$

• <u>CP violation in $\pi \pi$ decay</u> $A(K_L \rightarrow \pi^+ \pi^-)/A(K_S \rightarrow \pi^+ \pi^-) = \varepsilon + \varepsilon'$ $A(K_L \rightarrow \pi^0 \pi^0)/A(K_S \rightarrow \pi^0 \pi^0) = \varepsilon - 2 \varepsilon'$

ε' = « direct » *CP* violation (interference between I=0 and I=2 amplitudes)

Standard Model: both ε and ε '

Quantitative predictions difficult: $\epsilon'/\epsilon \approx (-10 \text{ to } +30) 10^{-4}$

25/07/2002

The double ratio R

$$\mathbf{R} \equiv \frac{\Gamma(K_L \to \pi^0 \pi^0) \Gamma(K_S \to \pi^+ \pi^-)}{\Gamma(K_S \to \pi^0 \pi^0) \Gamma(K_L \to \pi^+ \pi^-)} = 1 - 6 \operatorname{Re}(\epsilon'/\epsilon)$$

- need to measure small deviation of R from 1
- reduce to event counting if at least 2 modes taken simultaneously

NA48 method:

- take the 4 modes
 - o **simultaneously** (\Rightarrow cancellation of dead time, inefficiencies, ...)
 - o from same decay region

 K_L events are weighted to have same decay distribution as K_S (\Rightarrow minimise detector acceptance correction)

- **high resolution detectors** ⇒minimise residual backgrounds
- K_S/K_L identification by « **tagging** » the proton creating the K_S

The NA48 detector

History of the ε'/ε measurement by NA48

Summary of uncertainties on R for 98-99 data

Instantaneous beam intensity reduced by $\approx 30\%$

Dead time in drift chamber readout: $20\% \rightarrow 11\%$ (this dead time condition is recorded and applied in the analysis to all events) 25/07/2002 G.Unal, ICHEP02 Amsterdam 8

Analysis of the 2001 data sample

(some selected topics...)

$\pi^0\pi^0$ reconstruction

Acceptance

Does not rely on detailed detector simulation

K_{S} - K_{L} identification

Accidental effects

Accidental effect=event losses induced by (K_L) beam activity Miminised by simultaneous data collection in 4 modes

$$\Delta \mathbf{R} = \Delta (\pi^0 \pi^0 - \pi^+ \pi^-) * \Delta (\mathbf{K}_{\mathrm{L}} - \mathbf{K}_{\mathrm{S}})$$

• $\Delta(\pi^0\pi^0-\pi^+\pi^-)$ minimised by applying to all events the recorded dead time conditions

main tool: overlay $\pi\pi$ events with random events (∞ beam intensity)

- $\Delta(K_L-K_S)$ small by design of the experiment:
 - simultaneous beam

 K_{S} and K_{L} decays see the *same beam intensity* deviation = « intensity difference effect »

lifetime weighting

 K_{S} and K_{L} decays illuminate the *same part of the detector* residual effect = « illumination difference effect »

Uncertainties from accidental effects:

- Intensity difference effect: from estimates of $\Delta(\pi^+\pi^--\pi^0\pi^0)$ and $\Delta I/I$ $\Delta R = \pm 1.1 \ 10^{-4}$ (was $\pm 3 \ 10^{-4}$ for 98-99 data)
- Illumination difference effect: overlaying « random » events to $K_{\rm S}$ and $K_{\rm L}$ decays

 $\Delta R = \pm 3.0 \ 10^{-4}$

(limited by statistical uncertainty of overlay sample)

Summary of corrections and uncertainties on R for 2001 data

	in 10 ⁻⁴	units
$\pi^+\pi^-$ trigger inefficiency	+5.2	\pm 3.6 (stat)
$\pi^0\pi^0$ reconstruction		± 5.3
$\pi^+\pi^-$ reconstruction		± 2.8
$\pi^0\pi^0$ background	- 5.6	± 2.0
$\pi^+\pi^-$ background	+14.2	± 3.0
Beam scattering background	- 8.8	± 2.0
K _s tagging inefficiency		± 3.0
K _L accidental tagging as K _S	+ 6.9	± 2.8 (stat)
Accidental activity intensity difference		± 1.1
illumination difference		± 3.0 (stat)
K _s in time activity		± 1.0
Acceptance correction	+21.9	± 3.5 (stat)
		± 4.0
AKS inefficiency	+ 1.2	± 0.3
Total	+35.0	±11.0

Cross-checks of the stability of the result

25/07/2002

G.Unal, ICHEP02 Amsterdam

The double ratio result (2001 data)

The analysis is performed in Kaon energy bins to be insensitive to K_{S} - K_{L} differences in energy spectra

<u>Final result</u>

From 2001 data: $\epsilon'/\epsilon = (13.7 \pm 2.5 \pm 1.8)10^{-4}$ $= (13.7 \pm 3.1) 10^{-4}$

in very good agreement with 97-98-99 published result $\epsilon'/\epsilon = (15.3\pm2.6)10^{-4}$

Final combined result from NA48:

 $\epsilon'/\epsilon = (14.7 \pm 2.2)10^{-4}$

(correlated systematic uncertainty is $\pm 1.4 \ 10^{-4}$)

Comparison of experimental results

25/07/2002

NA48 measurement of ε'/ε is completed:

$\epsilon'/\epsilon = (14.7\pm 2.2) \ 10^{-4}$

proposed accuracy is reached

papers: - V.Fanti et al, Phys. Lett. B465, 335(1999) 97 data result - A.Lai et al, Eur. Phys. Jour.C83,22(2001) 98-99 data

- coming out soon on 2001 data

KTeV still to analyse 1999 data (≈same stat as 96-97 data) Kloe with different method (need luminosity)

The ball is now on the theory side ...

25/07/2002