The normal J/ψ nuclear absorption

NA50 Collaboration

Outline

- The physical motivation
- Data sets and experimental setups
- Data analyses
- Proton-nucleus Bμμ σ(J/ψ)/A results
 450 GeV, 400 GeV, 200 GeV
- Comparison with ion Bµµ σ(J/ψ)/AB results
 200 GeV O-Cu, O-U, S-U and 158 GeV Pb-Pb
- Comparison with ion Bµµ $\sigma(J/\psi) / \sigma(DY)_{2.9-4.5}$ results
 - 200 GeV S-U and 158 GeV Pb-Pb
- Conclusions

Motivation

NA50 studies J/ψ production in Pb-Pb collisions at 158 GeV.

A very well grounded baseline, describing the normal J/ψ nuclear absorption, has to be established.

Study J/ψ production measured in proton collisions with several A targets.

Extrapolate the expected J/ψ normal nuclear behaviour (as deduced from p-A collisions) to heavier systems.

Available p-A data sets Several experiments have measured J/ψ production, in proton-nucleus collisions, at different energies and kinematical domains: Saine Spectroineier NA50 experiment ■ p-A (A = Be, Al, Cu, Ag,W) at 450 GeV ■ p-A (A = Be, Al, Cu, Ag, W, Pb) at 400 GeV NA51 experiment ■ pp, pd at 450 GeV NA38 experiment \blacksquare p-A (A = C, Al, Cu, W) at 450 GeV \blacksquare p-A (A = Cu, W, U) and A-B (O-Cu, O-U, S-U) at 200 GeV ■ NA3 experiment ■ pp, pPt at 200 GeV

Experimental setups

	E _{lab} (GeV)	Data	Ү* _{µµ}	Cos(θ _{CS})	Absorber
NA50	450	p-A	-0.50 : 0.50	< 0.5	C, Fe
NA50	400	p-A	-0.45 : 0.55	< 0.5	C, Fe
NA50	158	Pb-Pb	0.00 : 1.00	< 0.5	C, Fe
NA51	450	pp, pd	-0.40:0.60	< 0.5	C, Fe
NA38	450	p-A	-0.40 : 0.60	< 0.5	С
NA38	200	p-A	0.00 : 1.00	< 0.5	С
NA38	200	A-B	0.00 : 1.00	< 0.5	С

Data analyses

 NA50, NA51 and NA38 analyses are performed with identical methods.

The experimental dimuon opposite-sign mass spectrum is analysed through a fit including several ingredients:

- $J/\psi \to \mu^+\mu^-$
- $\psi' \rightarrow \mu^+ \mu^-$
- Drell-Yan process
- Correlated semileptonic decays of open charm mesons.

Combinatorial background

NA51 and NA38 joint α fit

 NA38 has measured J/ψ production in several systems at 450 GeV and 200 GeV.

 NA38 results are compiled in PLB 466 (1999) 408 and analysed together with NA51 450 GeV pp, pd results.

^{**-**} J/ψ nuclear dependence was parametrized as $\sigma(J/\psi) = \sigma_0 A^{\alpha}$

P _{lab}	N ₀ (nb)	α _{I/w}
450 GeV	5.7±0.3	0.919±0.015
200 GeV	2.3±0.6	0.911±0.034

NA51 and NA38 joint Glauber fit

 A Glauber Model was used to describe J/ψ nuclear dependence production

E _{lab}	N ₀ (nb)	σ _{abs} (mb)
450 GeV	5.5±0.2	7.1±1.6
200 GeV	2.2±0.5	7.8±3.5

If NA51 results are excluded from the Glauber fit, we obtain:

\mathbf{E}_{lab}	N₀ (nb)	σ _{abs} (mb)	
450 GeV	5.0±0.5	4.8±2.6	
200 GeV	2.2±0.5	7.8±3.5	

Possible normalization problem between NA51 and NA38 450 GeV p-A results?

NA50 Glauber fit results

 NA50 has 3 different p-A data collections, at 2 different energies and using several targets (A=Be,Al,Cu,Ag,W,Pb)

Set	\mathbf{E}_{lab}	N ₀ (nb)	σ _{abs} (mb)
HI 96/98	450 GeV	5.6±0.3	4.4±1.2
LI 98/00	450 GeV	5.6±0.3	4.0±1.4
HI 2000	400 GeV	5.1±0.1	4.0±0.5

Results from different data sets are compatible

Perform a simultaneous Glauber fit

NA51 and NA50 joint Glauber fit

 Glauber fit results including NA51 data

 NA51 results are consistent with the extrapolated Glauber behaviour from the NA50 450 GeV p-A results.

► No apparent problem in normalization between NA51 and NA50 450 GeV p-A results.

NA51, NA50 and NA38 Glauber fit

 NA50 and NA38 p-A 450
 GeV results are not in agreement regarding normalization.

Possible systematic problem on NA38 crosssection measurements when compared to NA50.

Set	\mathbf{E}_{lab}	N₀ (nb)	σ _{abs} (mb)
NA50	450 GeV	5.6±0.1	
NA50	400 GeV	5.1±0.1	4.1±0.4
NA38	450 GeV	4.9±0.2	

NA51, NA50 and NA38 Glauber fit

We revisited the NA38 studies.

 A problem was found in the NA38 450 GeV p-A reconstruction.

 This problem does not affect the NA38 p-A 200 GeV results (at much lower intensity beam).

 An overall ~11% correction has to be applied to the NA38 450 GeV p-A results.

Set	P _{lab}	N ₀ (nb)	σ _{abs} (mb)
NA50	450 GeV	5.6±0.1	
NA50	400 GeV	5.1±0.1	A 1+0 A
NA38	450 CoV	5 5+0 2	4.170.4
(corrected)	430 00 0	5.510.2	

NA50 and NA38 comparisons

The fact that NA50 450 GeV p-A results are now compatible with NA38 450 GeV p-A results (within 2-3%) indicate that:

- The systematic differences between the two experiments are small and under control;
- NA50 data at 450/400 GeV can be safely compared with NA38 data at 200 GeV, in terms of slopes and normalizations.

NA38 and NA3 200 GeV Glauber fit

• The 200 GeV NA38 p-A results are not sufficient to extract σ_{abs} .

• NA3 has measured J/ψ production in pp and pPt collisions at 200 GeV. The inclusion of these data in the Glauber fit will constrain the σ_{abs} determination.

Comparison of σ_{abs} results

Glauber fit results to the 450/400 GeV p-A data:

E _{lab}	N ₀ (nb)	σ _{abs} (mb)	
450 GeV	5.6±0.1	<u>/ 1+0 /</u>	
400 GeV	5.1±0.1	4.1_0.4	

Glauber fit results to the 200 GeV p-A data

E _{lab}	N₀ (nb)	σ _{abs} (mb)
200 GeV	1.7±0.3	3.3±3.0

 σ_{abs} is determined with bad accuracy at 200 GeV.
 However, these data are important since they establish the normalization at lower energies.

• σ_{abs} results for the different energies are compatible

Assume σ_{abs} is constant
 between 450, 400 and 200
 GeV.

Final σ_{abs} results

 Final results are obtained from a simultaneous Glauber fit performed for the 450/400/200 GeV p-A data

N ₀ ²⁰⁰ (nb)	N ₀ ⁴⁰⁰ (nb)	N ₀ ⁴⁵⁰ (nb)	N ₀ ²⁰⁰ /N ₀ ⁴⁰⁰	N ₀ ²⁰⁰ /N ₀ ⁴⁵⁰	σ _{abs} (mb)
1.8±0.1	5.1±0.1	5.6±0.1	0.348±0.027	0.319±0.025	4.1±0.4

Experimental rescaling to 200 GeV

 $\mathbf{B}_{\mu\mu}$ σ(J/ψ) / A (nb/nucleon)

• The ratios N_0^{200}/N_0^{450} and N_0^{200}/N_0^{400} are used to scale down J/ ψ absolute cross - sections from higher energies to 200 GeV.

 The rescale systematic error (7.8%) is not included in the data error bars.

Comparison with NA38 light ion data

The A-B data from
 NA38 are not included
 in the Glauber fits.

They are just plotted and compared with the corresponding Glauber estimation deduced from p-A data.

Comparison with NA50 Pb-Pb results

NA50 has also measured Pb-Pb
 J/ψ absolute cross-section at 158
 GeV.

 The "Schuler parametrization" (in energy and x_F) is used to scale down all data from the 200 GeV kinematical domain to the 158 GeV kinematical domain.

 The Pb-Pb J/ψ production result is compared with the extrapolated Glauber behaviour deduced from p-A data with no assumptions at all regarding A-B results.

ψ absorption curve as a function of L

• The same absorption curve, with σ_{abs} =4.1±0.4 mb, is drawn as a function of L, the average path length of J/ ψ in nuclear matter, for the 3 different energies:

450 GeV
400 GeV
200 GeV

ψ absorption curve as a function of L (2)

10

The absorption curve is directly compared with NA38 Bµµ $\sigma(\psi)$ /AB results at 200 GeV.

The absorption curve has to be scaled down to the NA50 158 GeV kinematical domain for a direct comparison with Pb-Pb Bμμ $\sigma(\psi)$ /AB results.

p-A Bµµ σ(ψ) /σ(DY)_{2.9-4.5} σ_{abs} result

• Bµµ $\sigma(\psi) / \sigma(DY)_{2.9-4.5}$ results in p-A collisions are extracted from NA51 and NA50 data. A Glauber fit is performed using these measurements:

• This σ_{abs} value is in good agreement with the one obtained from Bµµ $\sigma(\psi)$ /AB results ($\sigma_{abs} = 4.1 \pm 0.4$ mb).

NA50 Collaboration@Hard Probes 2004 - Ericeira - Portugal

ψ /DY absorption curve as a function of L

- The ψ /DY absorption curve is scaled down to 200 GeV using the J/ψ experimental rescales measured in p-A data and a LO DY calculation. <u>S-U Βμμ σ(ψ) / σ(DY)_{2.9-4.5}</u> results at 200 GeV are compared with the absorption curve.

ψ /DY absorption curve as a function of L (2)

Bµµ $\sigma(\psi) / \sigma(DY)_{2.9-4.5}$ Pb-Pb results are compared with an absorption curve scaled down from 200 GeV to 158 GeV using Schuler energy/x_F dependence and a LO DY calculation.

Summary and Conclusions

- J/ψ production was deeply studied using the available p-A data at different energies (450, 400 and 200 GeV) from several experiments (NA51, NA50, NA38 and NA3).
- From the J/ψ absolute cross-section used in this study, we have obtained
 - $\sigma_{abs}(450, 400 \text{ GeV}) = 4.1 \pm 0.4 \text{ mb}$
 - $\sigma_{abs}(200 \text{ GeV}) = 3.3 \pm 3.0 \text{ mb}$

allowing us to assume that σ_{abs} may be the same within the energy range and kinematical domains of the different experiments.

Summary and Conclusions (2) Results from a simultaneous fit to p-A data at the different energies and kinematical domains, give σ_{abs} = 4.1 ± 0.4 mb and allow to scale down absolute cross-section from higher energies to 200 GeV. • We observe that the J/ψ NA38 O-Cu, O-U and S-U results lie on top of the absorption curve deduced from p-A data. Pb-Pb results are systematically below the absorption curve, either in: **B** $\mu\mu\sigma(\psi)$ /AB measurements ■ Bµµ $\sigma(\psi) / \sigma(DY)_{2.9.4.5}$ measurements

More details in analysis metod The opposite sign mass spectrum is analysed in a multistep fit procedure:

- $1.5 \le M_{\mu\mu} < 8.0 \text{ GeV/c}^2 \rightarrow 1^{\text{st}}$ aproach. Obtain good initial values.
- $1.5 \le M_{\mu\mu} < 2.3 \text{ GeV/c}^2 \rightarrow \text{Get } R_{BKG}$
- 2.7 ≤ $M_{\mu\mu}$ < 4.1 GeV/c² → Precise definition of the ressonance shapes
- $1.5 \le M_{\mu\mu} < 8.0 \text{ GeV/c}^2 \rightarrow \text{Get } N_{\psi}, N_{\psi'}, N_{DY}, N_{DD} \text{ contributions}$
- Acceptances and physical shapes of the different contributions are obtained via MC and spectrometer simulation.
- Background shape is obtained from the like sign mass spectra coming from π[±], K[±] uncorrelated decays N[±] = 2 R_{BKG} (N⁺⁺ N⁻)^{1/2}

An empty target contribution is included taking into account dimuons produced upstream and downstrem from the target.

Systematics between NA38 and NA3?

- The systematics between NA3 and NA38 data at 200 GeV may exist.
- We have increased NA3 data by a factor 1.21 corresponding to the ratio

 $(\sigma_{pW}/A_W)|_{NA38} / (\sigma_{pPt}/A_{Pt})|_{NA3}$

The simultaneous Glauber calculation was performed as before. We have obtained:

\mathbf{E}_{lab}	N₀ (nb)	σ _{abs} (mb)
200 GeV	1.7±0.3	3.3±3.0
200 GeV	2.0±0.4	5.4±3.4

200 GeV A-B Glauber fit results

Include A-B results in the Glauber fits at 200 GeV

E _{lab}	p-A	O-Cu,U	S-U	N ₀ (nb)	σ _{abs} (mb)
200 GeV	\checkmark			1.7±0.3	3.3±3.0
200 GeV	\checkmark	\checkmark		1.7±0.3	4.2±2.6
200 GeV	\checkmark	\checkmark	\checkmark	1.8±0.3	5.4±1.9

 From NA3 to NA38 kinematical domain
 NA3 has measured J/ψ production in pp, pPt collisions. Results are obtained to x_F > 0 and reported in Z. Phys. C20 (1983) 101.

	σ _{π-A} (nb/nuc)	σ _{p-A} /σ _{π-A}	σ _{p-A} (nb/nuc)
H ₂	6.3±0.8	0.58±0.07	3.654±0.640
Pt	4.92±0.77	0.53±0.05	2.608±0.477

Rescale to NA38 kinematical domain:

- Divide by a factor 2 (assuming an uniform |Cos(θ_{cs})| distribution)
- Multiply by 0.907±0.084 to rescale to NA38 x_F domain at 200 GeV.
 - $d\sigma/dx_{F} \sim (1 |x_{F}|)^{d}$

	σ _{p-A} (nb/nuc)
H ₂	1.657±0.328
Pt	1.182±0.242

"Schuler parametrization" and R.Vogt calculations NA51/NA50/NA38/NA3 experimental rescale σ_0 (450 GeV, -0.5 < $Y_{\mu\mu}$ < 0.5) / σ_0 (200 GeV, 0.0 < $Y_{\mu\mu}$ < 1.0) = 0.319 ± 0.025

Comparison with other J/ψ production descriptions

E _{lab}	x _F	Schuler (E,x _F)	R. Vogt (E,x _F)
450 GeV → 200 GeV	[-0.11 : 0.11[→ [0.00 : 0.38[$(0.460\pm0.009) * (0.866\pm0.139) = 0.398\pm0.064$	0.394 * 0.947 = 0.373
200 GeV → 158 GeV	[0.00: 0.38[→ [0.00: 0.42[$(0.738\pm0.006) * (1.020\pm0.013) = 0.753\pm0.011$	0.724 * 1.026 = 0.743

R.Vogt calculation from

- Int. J. Mod. Phys. E12 (2003) 211
- hep-ph/0311048

Schuler parametrizations

• $d\sigma/dx_F \sim (1 - |x_F|)^d$ with $d = [13.5 \pm 4.5]/(1 + ([44.9 \pm 21.9]/s^{1/2}))$ • $\sigma \sim (1 - M/s^{1/2})^n$ with $n = 12.7 \pm 0.3$