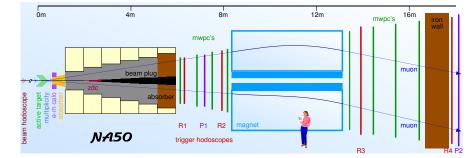
Charmonia production and suppression at SPS energies


P. Cortese for the NA50 Collaboration:

B. Alessandro, C. Alexa, R. Arnaldi, M. Atayan, S. Beolè, V. Boldea, P. Bordalo, G. Borges, C. Castanier, J. Castor, B. Chaurand,
B. Cheynis, E. Chiavassa, C. Cicalò, M.P. Comets, S. Constantinescu, P. Cortese, A. De Falco, N. De Marco, G. Dellacasa,
A. Devaux, S. Dita, J. Fargeix, P. Force, M. Gallio, C. Gerschel, P. Giubellino, M.B. Golubeva, A.A. Grigorian, S. Grigorian,
J.Y. Grossiord, F.F. Guber, A. Guichard, H. Gulkanyan, M. Idzik, D. Jouan, T.L. Karavitcheva, L. Kluberg, A.B. Kurepin, Y. Le Bornec,
C. Lourenço, M. Mac Cormick, A. Marzari-Chiesa, M. Masera, A. Masoni, M. Monteno, A. Musso, P. Petiau, A. Piccotti, J.R. Pizzi,
F. Prino, G. Puddu, C. Quintans, L. Ramello, S. Ramos, L. Riccati, H. Santos, P. Saturnini, E. Scomparin, S. Serci, R. Shahoyan,
F. Sigaudo, M. Sitta, P. Sonderegger, X. Tarrago, N.S. Topilskaya, G.L. Usai, E. Vercellin, L. Villatte, N. Willis, T. Wu

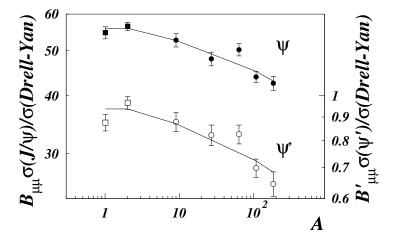
- Università del Piemonte Orientale/INFN, Alessandria, Italy
- LAPP, CNRS-IN2P3, Annecy-le-Vieux, France
- LPC, Univ. Blaise Pascal and CNRS-IN2P3, Aubière, France
- IFA, Bucharest, Romania
- Università di Cagliari/INFN, Cagliari, Italy
- CERN, Geneva, Switzerland
- LIP, Lisbon, Portugal
- INR, Moscow, Russia, IPN

- Univ. de Paris-Sud and CNRS-IN2P3, Orsay, France
- LLR, Ecole Polytechnique and CNRS-IN2P3, Palaiseau, France
- Università di Torino/INFN, Torino, Italy
- IPN, Univ. Claude Bernard Lyon-I and CNRS-IN2P3,
- Villeurbanne, France
- YerPhI, Yerevan, Armenia

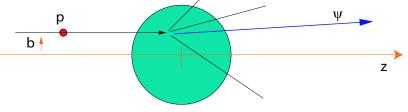
SQM 2004 Cape Town, Sep. 15-20

Charmonia studies at the SPS: physics motivation

Search for the transition of nuclear matter to a deconfined phase of quarks and gluons predicted by statistical QCD at high enough temperature and density


► Favourable environment: heavy ion collisions

Questions:


- Can it be reached at SPS energies?
- In which conditions? System size, energy density...

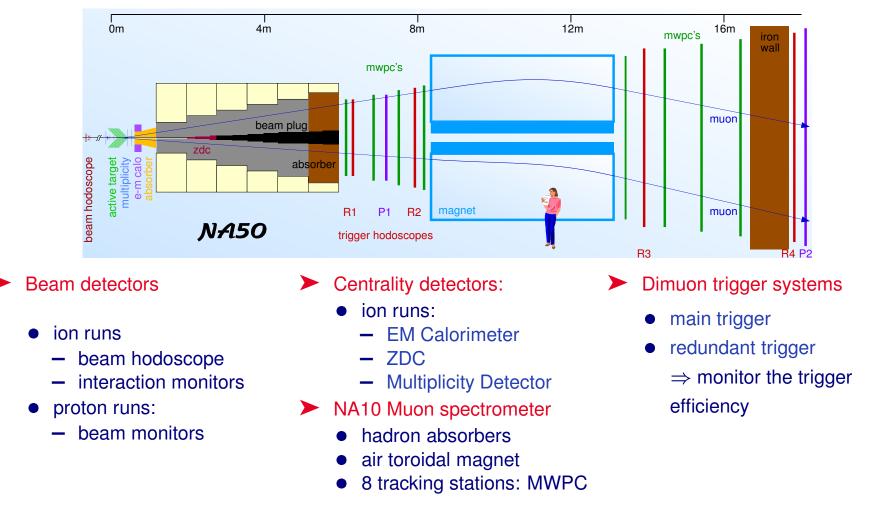
NA50 can study signatures of deconfinement in the dimuon channel, in particular: > J/ ψ suppression, first proposed in 1986 by T. Matsui and H. Satz In this framework J/ ψ production is characterized by: hard production: $\sigma_{c\overline{c}} \propto AB$ + suppression by colour screening in the QGP

With the caveat that, even in absence of colour screening, there are other sources of charmonia suppression

 ${\rm J}/\psi$ absorption is present already in p-A where no QGP can be foreseen

Charmonia production in nuclear collisions

 $c\overline{c}$ resonances can be suppressed by different sources


- "Ordinary" absorption processes alias "normal" J/ψ suppression
 - nuclear absorption \propto path of the $c\overline{c}$ state in nuclear matter
 - dissociation by a hadron gas
 - * possible in A-B collisions
 - * not possible in p-A

 Debye colour screening alias "anomalous" J/ψ suppression
 ➤ could be present only in heavy ion collisions

The study of different systems helps to disentangle the different contributions

The different $c\overline{c}$ states have different binding energies: J/ψ : 640 MeV χ_c : 200 MeV ψ' : 50 MeV \Rightarrow have different sensitivity to the absorption mechanisms NA50 measures $\mu^+\mu^-$: direct ψ' production \Leftrightarrow inclusive J/ψ production J/ψ : direct J/ψ (~60%) J/ψ from χ_c decays (~30%) J/ψ from ψ' decays (~10%)

The NA50 muon spectrometer

The experiment had several upgrades along the years and its name changed from NA38 to NA50 and NA51

Coverage: $2.9 < y_{Lab} < 3.9$ $|\cos \theta_{CS}| < 0.5$ $\begin{array}{l} \mbox{Typical acceptances:} \\ A_{J/\psi} \sim 14 \ \% \\ A_{\psi'} \sim 15 \ \% \end{array}$

SQM 2004

Latest results from NA50

Results from year 2000 data taking

- improved experimental conditions
- improved analysis techniques
 - Charmonia production in Pb-Pb collisions at 158 GeV/c
 - Charmonia production in p-A at 400 GeV/c

Reanalysis of older data samples

> allows consistent analysis conditions of J/ ψ and ψ' production when comparing different data sets

- Pb-Pb 1998 data taking at 158 GeV/c
- S-U 1992 data taking at 200 GeV/c

Improvements in the Pb-Pb experimental setup

year 1998 vs. 1995-96:

segmented target 1995: 17% λ_I and 1996: 30% λ_I

single target 1998: 7% λ_I to avoid ion re-interactions \checkmark confirmation of results about central collisions

year 2000: single target under vacuum $9.5\% \lambda_I$ improved study of peripheral collisions

- Year 2000 data taking was developed in a clean environment with no Pb-Air collisions
 - \Rightarrow could select peripheral collisions down to $E_T = 3 \text{ GeV}$ first $E_T \text{ bin } \Leftrightarrow \langle b \rangle = 11.8 \text{ fm}$

The other experimental improvements

Common to pA and Pb-Pb 2000 data sets

- → improved reconstruction program featuring a higher reconstruction efficiency
- → improved fitting technique
 - \checkmark more accurate estimation of the small ψ' event sample

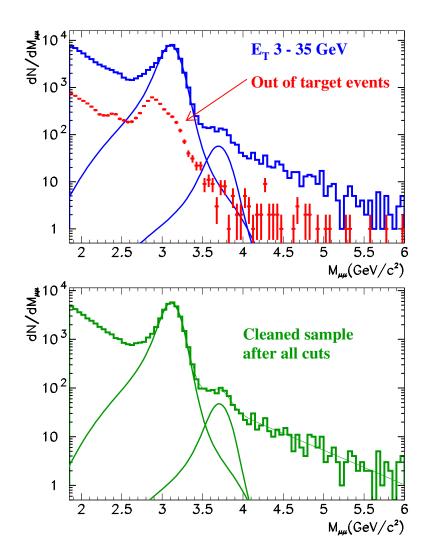
Pb-Pb 2000

- pile-up rejection system pulse shape analysis of the signal of the EM calorimeter
- vertex identification (correlation of hits on Multiplicity Detector planes)
 reliable selection of peripheral interactions

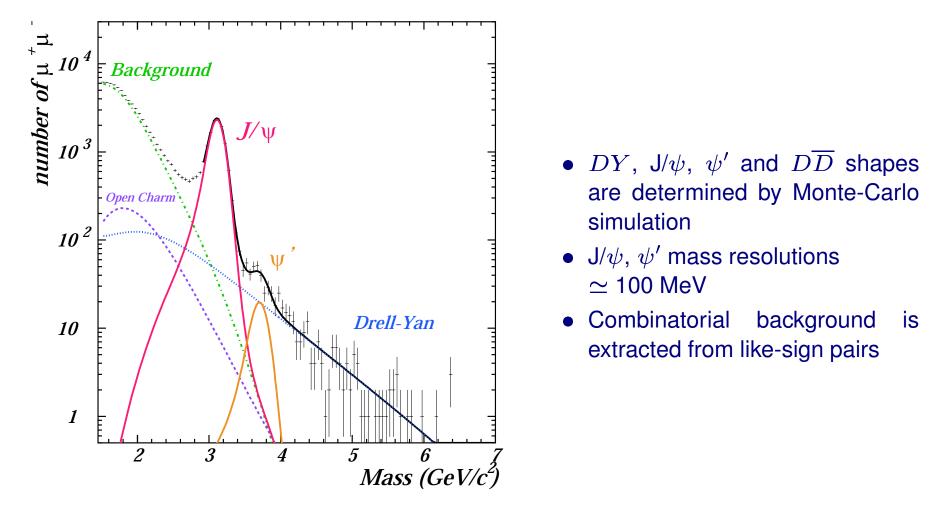
p-A 2000 devoted to the accurate measurement of J/ ψ nuclear absorption - baseline for the "anomalous" suppression:

- data on 6 targets with frequent target changes
 - \Rightarrow reduces the systematic errors on detection efficiencies

Pb-Pb 1998 and S-U 1992: analysis improvements


- → reanalysis of previous data using more up-to-date Parton Distribution Functions in the MC
 - reduced systematics in the comparision of different data sets

SQM 2004


The analysis technique: data selection

- Reject dimuons produced out of target which distort the invariant mass spectrum
 - reject interactions upstream of the target using dedicated detectors (Pb-Pb)
 - identify in-target interactions using Multiplicity detector and the correlation $E_t vs E_{ZDC}$ (Pb-Pb)
 - apply track quality cuts to further reject dimuons produced in the hadron absorber (Pb-Pb and p-A)
 - subtract the empty target spectrum (p-A)
- Reject the interaction pile-up that gives a bias on the centrality measurement

✓ After all cuts a clean dimuon sample is obtained

The extraction of the signal contributions

$$\frac{dN^{+-}}{dM} = n^{DY} \frac{dN^{DY}}{dM} + n^{J/\psi} \frac{dN^{J/\psi}}{dM} + n^{\psi'} \frac{dN^{\psi'}}{dM} + n^{D\overline{D}} \frac{dN^{D\overline{D}}}{dM} + \frac{dN^{bck}}{dM}$$

Normalizations of the signals are determined with a fit to $\mu^+\mu^-$ invariant mass spectra

Outline of results

J/ψ

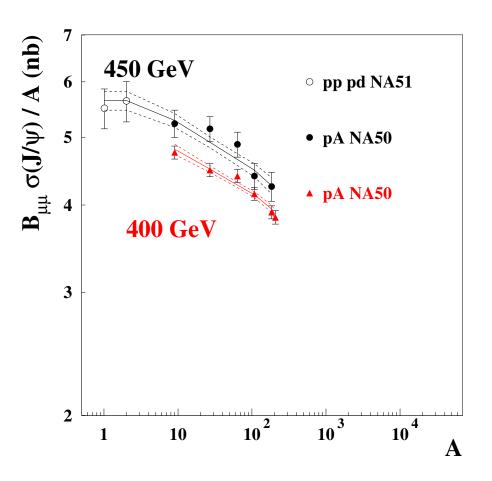
- 1 Absolute cross sections integrated on centrality
 - a) J/ ψ production in p-A 450 and 400 GeV
 - only nuclear absorption is expected
 - \rightarrow extract the absorption cross section of J/ ψ in nuclear matter
 - **b)** Compare with J/ψ suppression present in the collisions of light nuclear systems
 - additional absorption by comoving hadrons could be present
 - → this additional contribution is not needed to describe data
 - extract the absorption cross section common to pA and to the collisions of light nuclei
 - c) Investigate Pb-Pb collisions where is observed the onset of the anomalous ${\rm J}/\psi$ suppression
- 2 Study in more detail the J/ ψ suppression investigating the centrality dependence
- **3** Try to disentangle which is the underlying parameter governing J/ψ absorption

 ψ'

Compare absorption of the two resonances

J/ψ production in p-A collisions

• 450 GeV:


pp, pd from NA51 pBe, pAl, pCu, pAg, pW Errors include statistical + systematic errors

• 400 GeV:

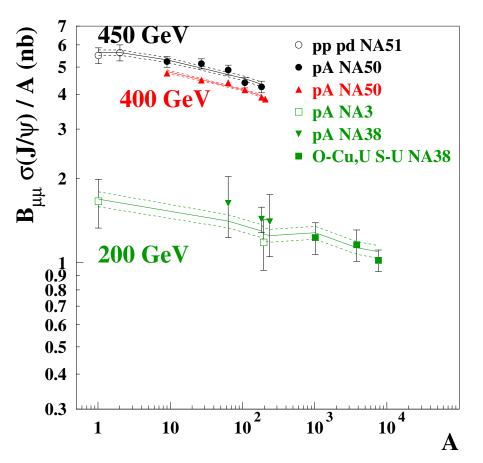
pBe, pAl, pCu, pAg, pW, pPb Errors include statistical and relative systematic errors. Uncertainty on the normalization (common and not plotted) is $\sim 3 \%$

Data at 400 GeV have the smallest relative systematic uncertainty

Glauber fit to extract the J/ ψ absorption cross section in nuclear matter $\sigma_{abs\,pA}(450) = 4.5 \pm 0.8 \text{ mb}$ $\sigma_{abs\,pA}(400) = 4.1 \pm 0.5 \text{ mb}$ J/ ψ absorption cross sections at the two energies are compatible within errors

J/ψ production in Proton, Oxygen and Sulphur induced collisions

 200 GeV: pCu, pW, pU
 O-Cu, O-U, S-U from NA38
 pp and pPt from NA3 (not used in the fits)


 $\sigma_{abs\,pA}(450) = 4.5 \pm 0.8 \text{ mb}$ $\sigma_{abs\,pA}(400) = 4.1 \pm 0.5 \text{ mb}$ $\sigma_{abs\,pA+AB}(200) = 7.7 \pm 3.2 \text{ mb}$

 ${\rm J}/\psi\,$ absorption cross sections at the three energies are compatible within errors

• The data sets can be fitted with a common J/ψ absorption cross section

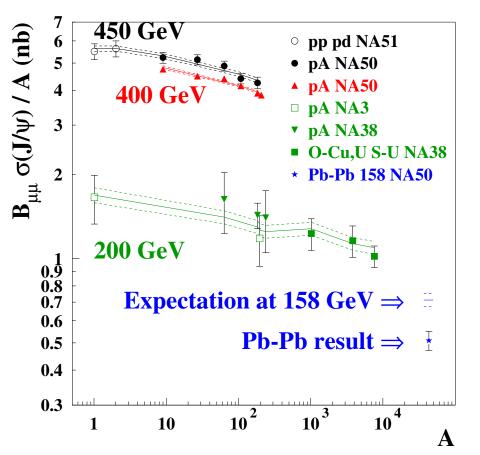
Simultaneous fit has 4 free parameters: normalizations at the 3 energies and a common absorption cross section

 $\sigma_{abs} = 4.2 \pm 0.4 \text{ mb}$ $\chi^2/d.o.f. = 0.48$

SQM 2004

${\rm J}/\psi$ production in Pb-Pb collisions

PbPb data has been taken at 158 GeV incident energy


 \Rightarrow rescale the J/ ψ production cross section in p-p from 200 GeV to 158 GeV with a NLO calculation

⇒ With the Glauber model estimate the J/ ψ production cross section in Pb-Pb taking into account nuclear absorption:

 $\sigma_{abs} = 4.2 \pm 0.4 \text{ mb}$

 ${\rm J}/\psi$ production in Pb-Pb is suppressed with respect to the extrapolation from lighter systems

Expected: $\sigma(J/\psi) = 0.71 \pm 0.04$ nb Measured: $\sigma(J/\psi) = 0.51 \pm 0.04$ nb

Centrality dependence of J/ ψ production: S-U

In nucleus-nucleus collisions we can study the centrality dependence of J/ ψ production

S-U collisions \Rightarrow EM calorimeter

Pb-Pb collisions \Rightarrow

EM calorimeter

ZDC Multiplicity Detector

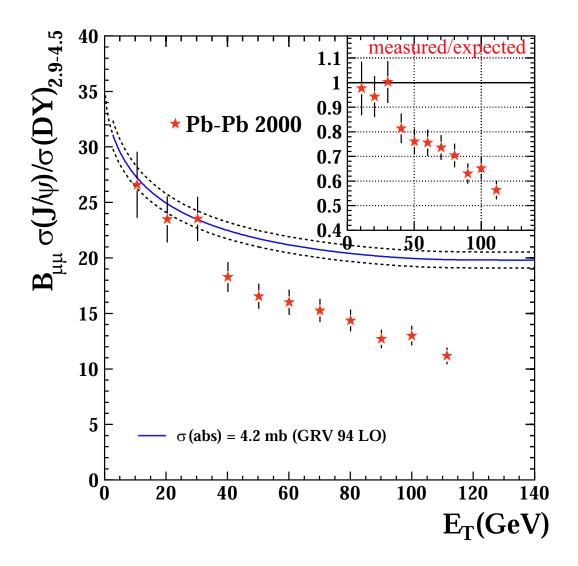
40 $(10^{-10} \text{ GeV})/\sigma$ Useful cross section ratio: $B_{\mu\mu}\sigma(\psi)/\sigma(Drell-Yan)$ luminosity cancels most of the ψ/DY S-U 200 GeV uncertainties shadowing is observed (or no foreseen) in NA50 kinematic domain straightforward normalization for all systems and for every centrality bin $\sigma_{DY} \propto N_{coll}$ 25 \Rightarrow convenient for the study of 22.5 centrality dependence 20 * price to pay: low DY statistics 10 20 30 50 80 90 100 60 70 0 **40** E_t (GeV)

A Glauber fit to S-U data gives $\sigma_{abs\,SU} = 7.0 \pm 3.0$ mb

SQM 2004

${\rm J}/\psi$ production in p-A and S-U collisions

To compare J/ψ production pA data 60 (integrated on centrality) with S-U data • \u03c8/DY pA 450 GeV (divided into centrality bins) we use the ▼ σ(ψ)/A pA 450 GeV variable L σ(ψ)/A pA 400 GeV L: path of nuclear matter crossed • ψ/DY S-U 200 GeV by the J/ψ 4 Target 3 V 20 Projectile 0 2 8 10 4 6 $L = \frac{\#nucleons/fm^2}{0.17 nucleons/fm^3}$ L (fm)

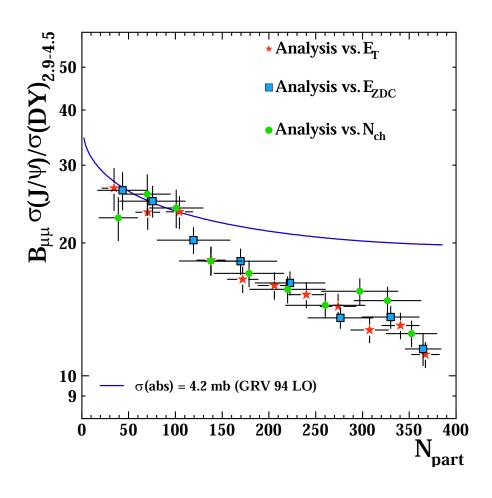

 $\sigma_{abs\,pA}=4.2\pm0.4$ mb (ψ/DY and σ_ψ at 450 GeV + σ_ψ at 400 GeV) $\sigma_{abs\,SU}=7.0\pm3.0$ mb

All data sets can be fitted with a common absorption cross section: $\sigma_{abs\,pA+SU} = 4.2 \pm 0.4 \text{ mb } \chi^2 = 0.55$

${\rm J}/\psi$ production in Pb-Pb collisions

 $J/\psi DY$ ratio as a function of E_T Compare the experimental results with the nuclear absorption observed in lighter systems

- Peripheral Pb-Pb results are in accordance with the expected nuclear absorption
- Departure from nuclear absorption at $E_T \sim 40 \text{ GeV}$
- Steady decrease after 40 GeV
- No saturation for central collisions

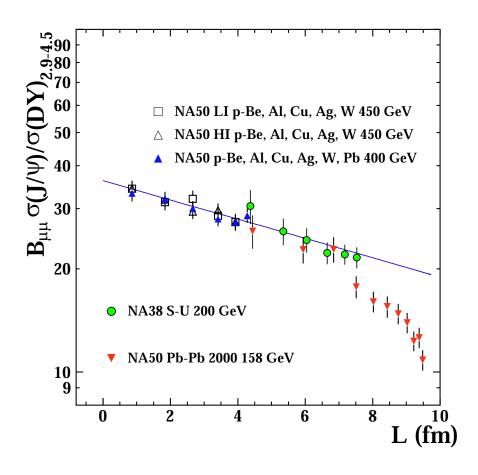


J/ψ production in PbPb (2)

Charged multiplicity Forward energy B_μ σ(J/μ)/σ(DY)_{2.9-4.5} 30 5 5 00 μμ 5.9-4.5 40 measured/expected $B_{\mu\mu}\,\sigma(J/\psi)/\sigma(DY)_{2.9-4.5}$ measured/e nect 1.1 1 35 Pb-Pb 2000 **Pb-Pb 2000** 0.9 0.9 0.8 0.8 30 0.7 0.7 **P** 0.6 0.6 25 0.5 0.5 0.4^E 0 0.4 200 400 20 30 10 20 ¢ 15 15 10 10 σ (abs) = 4.2 mb (GRV 94 LO) σ (abs) = 4.2 mb (GRV 94 LO) 5 5 0 0 0 0 400 500 600 100 200 300 15 20 25 30 35 5 10 N_{ch} E_{ZDC}(TeV)

Same pattern is observed with the other centrality estimators

Comparing the three analyses

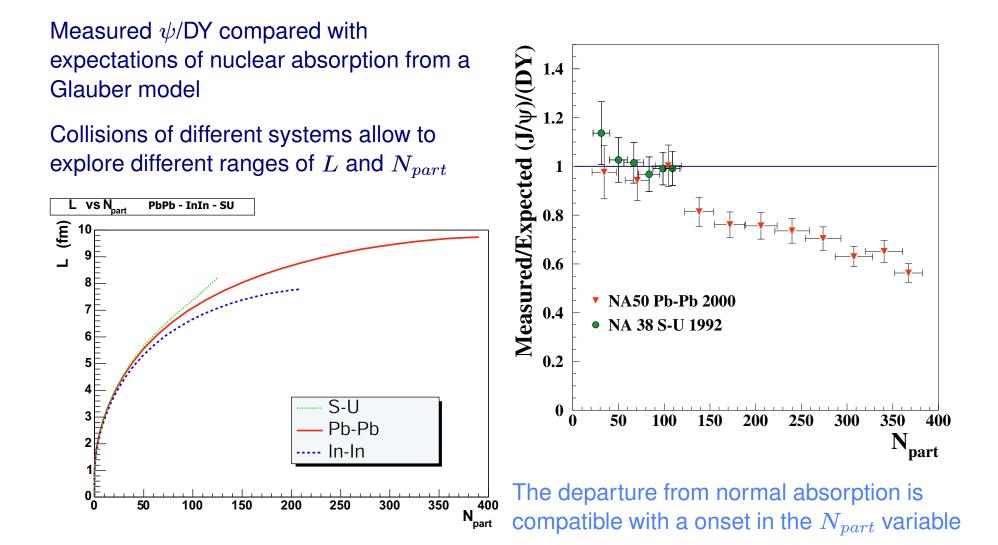


- E_T , $dN_{ch}/d\eta|_{max} \propto$ number of participants nucleons
- $E_{ZDC} \propto$ number of spectator nucleons
- *N_{part}* allows a straightforward comparison of the three analyses

 $\Delta N_{part} = RMS$ of the N_{part} distribution for each $(E_T, dN_{ch}/d\eta, E_{ZDC})$ bin (depends on detector resolution + experimental smearing)

The absorption pattern does not depend on a particular centrality estimator Departing from normal nuclear absorption between $N_{part} \sim 100$ and 150

Physics processes governing J/ ψ suppression: nuclear absorption



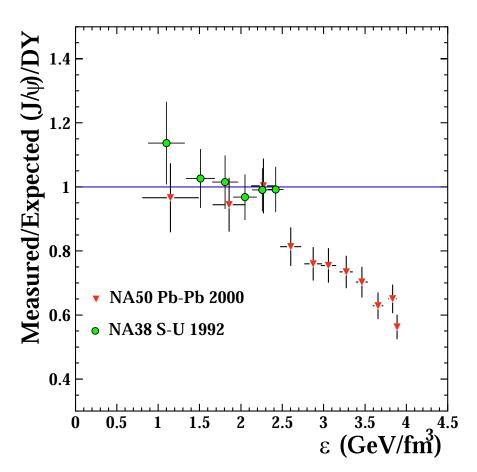
- Rescale all data sets to 158 GeV
- Correct DY for isospin effects

Study J/ ψ production as a function of *L*: the length of nuclear matter crossed by the J/ ψ

- In light systems and peripheral Pb-Pb collisions the J/ ψ absorption scales with L
 - L very probably is governing the normal absorption
- In Pb-Pb collisions the L scaling is broken
 - The anomalous suppression sets in

J/ψ suppression vs. the number of participants nucleons

${\rm J}/\psi$ suppression vs. energy density

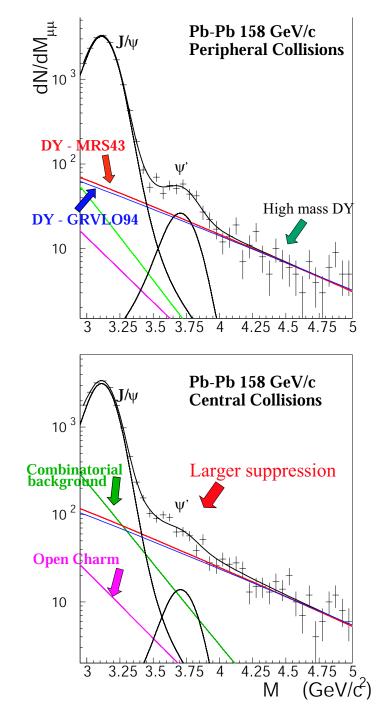

Measured ψ /DY compared with expectations of nuclear absorption from a Glauber model

Energy density computed with the Bjorken estimate:

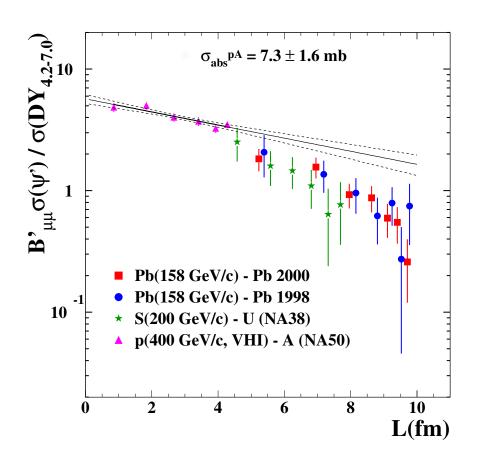
$$\varepsilon = \frac{\left. \frac{dE_T / d\eta \right|_{max}}{c \,\tau \, A_T}$$

• useful comparison between different colliding systems

The departure from normal absorption is compatible with an onset in energy density


The ψ^\prime study

Challenging analysis

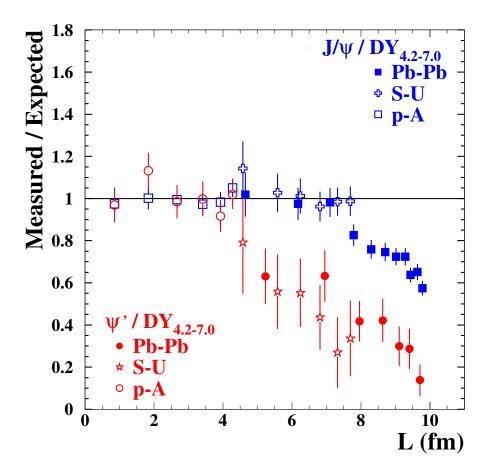

- small cross section and branching ratio
- large suppression
- several dimuon sources in the invariant mass spectrum range

Main systematics:

- ***** Different PDFs for Drell-Yan simulation introduce \sim 10% difference on ψ' normalization (GRV LO/MRS A)
- \Rightarrow consistent analysis of the different data sets
- \Rightarrow use high-mass DY as a reference

$\psi^\prime/{\rm DY}$ as a function of L

 ψ' is suppressed w.r.t. Drell-Yan


- absorption in $p-A \ll S-U$ and Pb-Pb
- strong suppression between peripheral and central A-B collisions (a factor ~ 7 in Pb-Pb)
- absorption in S-U and Pb-Pb are compatible when considered as a function of *L*

With an exponential fit we estimate the ψ' break up cross section: σ_{abs}

p-A:
$$\sigma^{\psi'}_{abs}=7.3\pm1.6$$
 mb

A more accurate Glauber fit (that includes also other NA50 ψ' published results) gives: $\sigma_{abs}^{\psi'} = 7.7 \pm 0.7$ mb

Summary: measured/expected

Measured: $(J/\psi)/DY$ and ψ'/DY Expected: predictions from a Glauber model:

- for J/ ψ $\sigma^{J/\psi}_{abs}=4.2~{\rm mb}~{\rm (p-A~and~S-U)}$
- for ψ' $\sigma^{\psi'}_{abs} = 7.7 \text{ mb (p-A)}$

Conclusions

p-A

 J/ψ and ψ' undergo nuclear absorption

 $\sigma^{J/\psi}_{abs} = 4.2 \pm 0.4 \text{ mb}$

$$\sigma^{\psi^{\prime}}_{abs}=7.7\pm0.7~{
m mb}$$

S-U

• J/ψ production can be described with the same nuclear absorption observed in pA

0

• Departure from nuclear absorption for the ψ'

Pb-Pb

- For the J/ψ : clear onset of the anomalous suppression
- The ψ' follows the same trend already observed in S-U collisions \Rightarrow points to towards a common origin of ψ' suppression in Pb-Pb and S-U