

Available online at www.sciencedirect.com





Nuclear Physics A 749 (2005) 243c-250c

Transverse momentum dependence of charmonium suppression in Pb-Pb collisions at the CERN SPS

A.B.Kurepin<sup>a</sup> for the NA50 Collaboration:

B.Alessandro<sup>b</sup>, C.Alexa<sup>c</sup>, R.Arnaldi<sup>b</sup>, M.Atavan<sup>d</sup>, S.Beolè<sup>b</sup>, V.Boldea<sup>c</sup>, P.Bordalo<sup>e\*</sup>, G.Borges<sup>e</sup>, C.Castanier<sup>f</sup>, J.Castor<sup>f</sup>, B.Chaurand<sup>g</sup>, B.Chevnis<sup>h</sup>, E.Chiavassa<sup>b</sup>, C.Cicalo<sup>i</sup>, M.P.Comets<sup>j</sup>, S.Constantinescu<sup>c</sup>, P.Cortese<sup>k</sup>, A.De Falco<sup>i</sup>, N.De Marco<sup>b</sup>, G.Dellacasa<sup>k</sup>, A.Devaux<sup>f</sup>, S.Dita<sup>c</sup>, J.Fargeix<sup>f</sup>, P.Force<sup>f</sup>, M.Gallio<sup>b</sup>, C.Gerschel<sup>j</sup>, P.Giubellino<sup>b</sup>, M.B.Golubeva<sup>a</sup>, A.A.Grigorian<sup>d</sup>, S.Grigorian<sup>d</sup>, F.F.Guber<sup>a</sup>, A.Guichard<sup>h</sup>, H.Gulkanyan<sup>d</sup>, M.Idzik<sup>b†</sup>, D.Jouan<sup>j</sup>, T.L.Karavitcheva<sup>a</sup>, L.Kluberg<sup>g</sup>, A.B.Kurepin<sup>a</sup>, Y.Le Bornec<sup>j</sup>, C.Lourenço<sup>1</sup>, M. Mac Cormick<sup>j</sup>, A. Marzari-Chiesa<sup>b</sup>, M. Masera<sup>b</sup>, A. Masoni<sup>i</sup>, M. Monteno<sup>b</sup>, A. Musso<sup>b</sup>, P. Petiau<sup>g</sup>, A. Piccotti<sup>b</sup>, J.R. Pizzi<sup>h</sup>, F. Prino<sup>b</sup>, G. Puddu<sup>i</sup>, C. Quintans<sup>e</sup>, L. Ramello<sup>k</sup>, S. Ramos<sup>e‡</sup>, L. Riccati<sup>b</sup>, H. Santos<sup>e</sup>, P. Saturnini<sup>f</sup>, E. Scomparin<sup>b</sup>, S. Serci<sup>i</sup>, R. Shahoyan<sup>e§</sup>, F. Sigaudo<sup>b</sup>, M. Sitta<sup>k</sup>, P. Sonderegger<sup>1</sup> X. Tarrago<sup>j</sup>, N.S. Topilskaya<sup>a</sup>, G.L. Usai<sup>i</sup>, E. Vercellin<sup>b</sup>, L. Villatte<sup>j</sup>, N. Willis<sup>j</sup>, T. Wu<sup>j</sup> <sup>a</sup>INR RAS, Moscow, Russia <sup>b</sup>Università di Torino/INFN, Torino, Italy <sup>c</sup>IFA, Bucharest, Romania <sup>d</sup>YerPhI, Yerevan, Armenia <sup>e</sup>LIP, Lisbon, Portugal <sup>f</sup>LPC, Univ. Blaise Pascal and CNRS-IN2P3, Aubière, France <sup>g</sup>LLR, Ecole Polytechnique and CNRS-IN2P3, Palaiseau, France <sup>h</sup>IPN, Univ. Claude Bernard Lyon-I and CNRS-IN2P3, Villeurbanne, France <sup>i</sup>Università di Cagliari/INFN, Cagliari, Italy <sup>j</sup>IPN, Univ. de Paris-Sud and CNRS-IN2P3, Orsay, France <sup>k</sup>Università del Piemonte Orientale, Alessandria and INFN-Torino, Italy <sup>1</sup>CERN, Geneva, Switzerland

Charmonium suppression in Pb-Pb collisions at 158 GeV/c per nucleon is investigated in detail with the study of the transverse momentum distributions of  $J/\psi$  as a function of the centrality of the collision. It is shown that the observed  $J/\psi$  suppression in Pb-Pb interactions is particularly significant mainly at low transverse momentum where it strongly depends on centrality. For peripheral Pb-Pb collisions, the transverse momentum dependence of the  $J/\psi$  cross section is, as a function of centrality, qualitatively similar to the dependence observed in p-A and S-U collisions. Comparing peripheral and central

<sup>\*</sup>also at IST, Universidade Técnica de Lisboa, Lisbon, Portugal

<sup>&</sup>lt;sup>†</sup>also at Faculty of Physics and Nuclear Techniques, Academy of Mining and Metallurgy, Cracow, Poland <sup>‡</sup>also at IST, Universidade Técnica de Lisboa, Lisbon, Portugal

<sup>&</sup>lt;sup>§</sup>on leave of absence of YerPhI, Yerevan, Armenia

<sup>¶</sup>also at IST, Universidade Técnica de Lisboa, Lisbon, Portugal

Pb-Pb collisions, the data show a relative suppression in the whole  $p_{\rm T}$  range although its amplitude significantly decreases with increasing  $p_{\rm T}$  and becomes almost  $p_{\rm T}$  independent for the highest  $p_{\rm T}$  values.

## 1. INTRODUCTION

Charmonium suppression in ultrarelativistic heavy ion collisions is considered as a potential signature of the phase transition from normal nuclear matter to a deconfined state of quarks and gluons. Charmonium production has been measured by the NA50 Collaboration in Pb-Pb collisions at 158 GeV/c per nucleon and in proton-nucleus collisions at 400 and 450 GeV/c [1,2].

Normal nuclear absorption of  $J/\psi$  has been measured in proton-induced reactions. The corresponding cross-section, deduced in the frame of a Glauber calculation, amounts to  $4.24 \pm 0.4$  mb [3]. It provides thereby the  $J/\psi$  normal nuclear absorption reference as a function of the path in nuclear matter that the produced  $c\bar{c}$  pair has to go through in order to emerge and survive, a quantity which is directly related to the centrality of the collision. The main result of the NA50 experiment in the study of Pb-Pb collisions is that whereas peripheral Pb-Pb collisions approximately follow the normal nuclear absorption pattern, a departure from this normal behaviour is observed for semi-central reactions which increases in amplitude with increasing centrality.

New results have been obtained recently for the production of the  $\psi'$ . The absorption cross section of  $\psi'$  in nuclear matter, as deduced from p-A experiments, is  $7.9 \pm 0.6$  mb. As expected from a loosely bound state,  $\psi'$  absorption increases significantly already in S-U reactions. In Pb-Pb central collisions, the  $\psi'$  suppression is about two times stronger than for  $J/\psi$ .

Preliminary results obtained from our latest data samples collected under improved experimental conditions can be found in [4,5]. In this article we extend our analysis of  $J/\psi$  production and study the suppression as a function of the transverse momentum of the charmonium state.

## 2. TRANSVERSE MOMENTUM DISTRIBUTIONS OF CHARMONIUM

Some of the features of the  $J/\psi$  transverse momentum distributions obtained from the first data samples collected by the NA50 experiment can be found in [6]. In particular, the dependence, as a function of the centrality of the collision, of the mean square transverse momentum and of the slope of the  $M_{\rm T}$  spectra were obtained from these data. When rescaled to the same energy and as a function of the mean length path of  $J/\psi$  in nuclear matter, the mean square transverse momentum of  $J/\psi$  exhibits the same behaviour for p-A, S-U and Pb-Pb collisions [7], which could be related to initial parton scattering. The data also show a change of the slope of the T dependence on the energy density near the value where the  $J/\psi$  production cross section starts to deviate from the normal absorption curve [8].



Figure 1. Ratio F of the  $J/\psi$  production cross section for Pb-Pb collisions at 158 GeV/c per nucleon in the  $p_{\rm T}$  bins shown on the plots (in GeV/c) to the DY cross section, as a function of the measured neutral transverse energy in GeV.

The high quality and the size of the sample of data collected in year 2000 allows a more detailed study of the  $J/\psi$  transverse momentum. As in our previous analysis, we study the ratio of the  $J/\psi$  cross section to the Drell-Yan cross section (we consider here the Drell-Yan with invariant mass higher than 4.2 GeV/ $c^2$ ), which is proportional to the  $J/\psi$  yield per nucleon-nucleon collision. Events are binned according to the centrality of the collision in which they are produced, in fact, to the neutral transverse energy  $E_{\rm T}$  which is experimentally measured, on an event by event basis, by an electromagnetic calorimeter with laboratory pseudorapidity coverage in the range [1.1-2.3].

We plot on Fig.1 the ratio F of the  $J/\psi$  to the DY cross section in the corresponding  $E_{\rm T}$  bin as a function of the transverse energy  $E_{\rm T}$  for 11 transverse momentum bins up to  $p_{\rm T} = 5.0 \text{ GeV/c}$ . The figure shows that, whereas for low values of  $p_{\rm T}$  there is a



Figure 2. Ratios  $R_i$  of the  $J/\psi$  transverse momentum distribution normalized to the DY cross section in the  $E_i$  bin 2 < i < 8 to the first  $E_1$  bin.

significant  $J/\psi$  suppression which strongly increases with centrality, when  $p_T$  increases, the dependence of the  $J/\psi$  normalized yield on centrality becomes weaker and weaker. In other words, the suppression observed on the integrated  $p_T$  yield from peripheral to central collisions originates mainly from the suppression of  $J/\psi$  with low  $p_T$  values.

In order to better visualize this dependence we consider the ratio  $R_i$  of each  $p_T$  distribution corresponding to a given  $E_T$  bin *i* with respect to the first and most peripheral bin, namely:

 $\mathbf{R}_{i} = \left( \mathbf{J}/\psi_{i} / DY_{i} \right) / \left( \mathbf{J}/\psi_{1} / DY_{1} \right)$ 

Fig.2 displays the eight ratios  $R_i$  as a function of  $p_T$ . It shows that with respect to the most peripheral collisions,  $J/\psi$  becomes more and more suppressed, with increasing centrality but also with decreasing  $p_T$  values. For high  $p_T$  values, above 3.5 GeV/c, the suppression although still increasing with centrality, exhibits no significant  $p_T$  dependence.



Figure 3. Ratio F of the  $J/\psi$  production cross section for proton-nucleus collisions in the  $p_{\rm T}$  bins shown on the plots (in GeV/c) to the DY cross section, as a function of the atomic number of the target nucleus.

Pb-Pb collisions are compared, hereafter, with p-A reactions where the  $J/\psi$  survival probability is affected by normal nuclear absorption only. In this case, when the  $J/\psi$  yield is parametrized according to  $A^{\alpha}$ , nuclear absorption leads to a value of  $\alpha$  lower than unity reflecting the absorption of the  $c\bar{c}$  pair within the target. The above picture becomes more complex when the survival probability as a function of  $p_{\rm T}$  is considered. Within the frame of the same NA50 experiment, we have therefore made a study of the  $J/\psi$  yield  $p_{\rm T}$ dependence for 400 GeV p-induced reactions on 6 different target nuclei: Be, Al, Cu, Ag, W and Pb. We have considered the same 11  $p_{\rm T}$  bins and have measured the ratio F in each of them for the six different targets. The results are shown in Fig.3.



Figure 4. Parameter  $\alpha$  obtained from the fit of the proton-nucleus J/ $\psi$  production cross sections as a function of the transverse momentum (GeV/c).

We have used the above  $A^{\alpha}$  parametrization of the  $J/\psi$  cross section separately in each of the 11  $p_{\rm T}$  bins in order to perform a  $p_{\rm T}$  dependent analysis. The results of this study are illustrated in Fig.4. They show that whereas for low values of  $p_{\rm T}$  J/ $\psi$  production as a function of the atomic mass number A increases less than proportionally to A (Drell-Yan is proportional to A and both are proportional to the number of nucleus-nucleus collisions) leading to a value of  $\alpha$  lower than unity, for high  $p_{\rm T}$  values J/ $\psi$  production increases faster than A so that the corresponding value of  $\alpha$  is higher than 1. There is a kind of normal nuclear absorption for the lower  $p_{\rm T}$  values but the magnitude of this absorption decreases with increasing  $p_{\rm T}$  then vanishes and turns to overproduction for high  $p_{\rm T}$  already above 2 GeV/c. This is, in fact, a wellknown behaviour observed since long in the production of hadrons and known as the Cronin effect.



Figure 5. Ratios  $R_i$  of the  $J/\psi$  transverse momentum distribution normalized to the DY cross section for S-U collisions from the NA38 experiment for the case of three  $E_T$  intervals.

For comparison we show in Fig.5 the data for S-U collisions as obtained from the NA38 experiment, where the effect of absorption is seen for low  $p_{\rm T}$  (R<1), together with some hints of enhancement for high  $p_{\rm T}$  (R>1) suggesting, within errors, a behaviour similar to the Cronin effect observed in p-A collisions.

The Pb-Pb data can be rebinned using only 3 bins of transverse energy in order to minimize statistical fluctuations. Fig.6 shows that for the most central Pb-Pb collisions and with respect to the most peripheral bin, the suppression exists for all values of  $p_{\rm T}$ . The centrality dependence decreases with increasing  $p_{\rm T}$ . For the highest  $p_{\rm T}$  values, no overproduction is observed: there is always an absorption which increases with centrality, although less pronounced than for small  $p_{\rm T}$  and which, moreover, does not exhibit any significant  $p_{\rm T}$  dependence.

## 3. CONCLUSIONS

The dependence of the  $J/\psi$  suppression pattern on  $p_T$  for Pb-Pb collisions is somewhat different from what is observed in the case of normal nuclear  $J/\psi$  absorption from pinduced reactions. In the latter case we see the change from absorption to enhancement with the increase of transverse momentum. For Pb-Pb collisions and for the whole  $p_T$ range, only absorption is observed with increasing centrality even if it is significantly stronger for low  $p_T$ . Moreover, the data suggest that absorption is almost  $p_T$  independent for the most central collisions and for the highest values of the transverse momentum.



Figure 6. Ratios  $R_2$  and  $R_3$  of the  $J/\psi$  transverse momentum distribution normalized to the DY cross section for the second and third centrality bins with respect to the first and most peripheral one, in the case of three  $E_T$  intervals, for Pb-Pb collisions.

## REFERENCES

- 1. M.C.Abreu et al.(NA50 Collaboration), Phys.Lett. B477 (2000) 28 and references therein.
- B.Alessandro et al. (NA50 Collaboration), Eur.Phys.J. C33 (2004) 33;
  P.Cortese et al. (NA50 Collaboration), Nucl.Phys. A715 (2003) 679.
- 3. B.Alessandro et al. (NA50 Collaboration), Phys.lett. B553 (2003) 167.
- 4. G. Borges et al. (NA50 Collaboration), J. Phys. G: Nucl. Part. Phys. 30 (2004) S1351.
- 5. H.Santos et al.(NA50 Collaboration), J. Phys. G: Nucl.Part.Phys. 30 (2004) S1175.
- 6. M.Abreu et al. (NA50 Collaboration), Phys.Lett. B499 (2001) 85.
- 7. A.B.Kurepin et al. (NA50 Collaboration), Nucl. Phys. A721 (2003) 249.
- 8. N.S.Topilskaya et al. (NA50 Collaboration), Nucl. Phys. A715 (2003) 675.