

Results on ψ' Production in Nucleus-Nucleus Collisions at CERN/SPS

Mario Sitta, Università del Piemonte Orientale, Italy for the NA50 Collaboration

Physics Motivations

- Charmonia production in pp, pA, AA collisions
- cc̄ states suppressed by
 - normal absorption in nuclear matter
 - nuclear absorption
 - absorption by hadron gas
 - anomalous suppression
 - Debye colour screening

Need for a systematic study with different systems

The NA50 Experiment

Charmonia detection via dimuon decay

 J/ψ , $\psi' \rightarrow \mu^+ \mu^-$

Dimuon detection in $2.92 \le y_{lab} < 3.92$ and $|\cos \theta_{cs}| < 0.5$

Typical acceptances: $A_{J/\psi} = 13.5\%$, $A_{\psi} = 14.8\%$

 $\begin{array}{l} \mbox{Multiplicity Detector} \\ \mbox{measures charged} \\ \mbox{particles in} \\ \mbox{1.9} \leq \eta_{_{\it lab}} < \mbox{4.2} \end{array}$

E.M. Calorimeter measures the neutral transverse energy in $1.1 \le \eta_{lab} < 2.3$ Zero Degree Calorimeter

measures the beam ion spectators energy in

 $\eta_{lab} > 6.3$

Data Collection

NA50 uses proton and lead beams colliding on different fixed targets

Data samples in Pb-Pb collisions

Data taking period	Target thickness	Number of subtargets	Beam intensity (ions/burst)	Number of J/ψ	Number of ψ'
1995	17% λ _ι	7 (in air)	3×10^{7}	50000	
1996	30% _{\lambda I}	7 (in air)	5×10^{7}	190000	
1998	7% λ _ι	1 (in air)	5.5×10^{7}	49000	380
2000	9.5% λ _I	1 (in vacuum)	7×10^{7}	129000	905

Data Selection

- Upstream interactions in Beam Hodoscope rejected by dedicated detectors
- Rejection of interaction pileup
- Target interactions identified using the Multiplicity Detector and track quality cuts

 J/ψ produced outside target pollutes the ψ' mass region

After all cuts a clean sample is obtained

The J/w Suppression

Results on $B_{\mu\nu}\sigma(J/\psi) / \sigma(DY_{42-7.0})$ as a function of E_{T}

The w' Study

- Challenging due to
 - small dimuon cross section
 - Iarge suppression
 - voverlap of several dimuon sources

Different structure functions (GRV LO or MRS LO) chosen to simulate Drell-Yan can induce a 10% difference in ψ ' normalization

Combinatorial background is accurately measured from like-sign sample in each centrality region

The uncertainty due to Open Charm semileptonic decays is negligible

$\psi'/DY_{4.2-7.0}$ as a function of E_{T}

The transverse energy E_{τ} is used as the collision centrality estimator

- ψ' is increasingly suppressed with respect to Drell-Yan
- Good compatibility between Pb-Pb 2000 and Pb-Pb 1998 data

ψ'/ψ as a function of E_{τ}

The transverse energy E_{τ} is used as the collision centrality estimator

ψ'/ψ as a function of $A_{proj}B_{targ}$

Study of ψ'/ψ in p-A, S-U and Pb-Pb systems as a function of A_{proj} and B_{targ}

- The ratio $B'_{\mu\mu}\sigma(\psi')/B_{\mu\mu}\sigma(J/\psi)$ can be parametrized with a power law like $A^{\Delta\alpha}$
- ψ' is more suppressed than
 J/ψ already in p-A collisions

 $\alpha_{_{\psi^{'}}}-\alpha_{_{J\!/\!\psi}}=-\ 0.047\pm 0.008$

 ψ' is even more suppressed in ion-ion interactions

$\psi'/DY_{4.2-7.0}$ as a function of L

L is the mean path crossed by the cc pair in the nuclear matter

Using an exponential parametrization $\sigma_0 \exp(-\langle \rho L \rangle \sigma_{abs})$ in p-A collisions for ψ' we have $\sigma_{abs} = 7.4 \pm 1.4 \text{ mb}$ and in S-U and Pb-Pb 2000 fitted simultaneously $\sigma_{abs} = 21.6 \pm 2.5 \text{ mb}$

- Different behaviour between p-A and A-B collisions
- Strong suppression of ψ' between peripheral and central A-B interactions
- The ψ' suppression is the same in S-U and Pb-Pb collisions as a function of L

$\psi'/DY_{4.2-7.0}$ as a function of N_{part}

The centrality estimator N_{part} is calculated from the measured transverse energy

 $< E_T(b) > = q N_{part}(b)$

where *q* is the mean energy per participant deposited in the E.M. calorimeter

The behaviour of the ratio $B_{\mu\mu}\sigma(\psi')/\sigma(DY_{4.2-7.0})$ as a function of the number of participants in the collision exhibits again a strong suppression in A-B interactions

J/ψ and ψ' "measured" over "expected"

Ratio measured over normal absorption, obtained from full Glauber calculation with

$$\sigma_{_{abs}}$$
 = 4.3 ± 0.3 mb

for J/ψ (from p-A and S-U) and

 $\sigma_{_{abs}} = 7.9 \pm 0.6 \text{ mb}$

for ψ' (from p-A only)

In A-B collisions the ψ' departs from the expected absorption curve for lower *L* values with respect to the J/ψ

Conclusions

- For Pb-Pb collisions:
 - ψ' is suppressed as a function of centrality w.r.t. Drell-Yan by a factor 7 between peripheral and central collisions
 - the ratio ψ'/ψ decreases with centrality by a factor 2.5 between peripheral and central collisions
- Comparing with lighter systems
 - ψ' is much more suppressed in A-B (already in S-U) than in p-A reactions
 - ψ' pattern suppression is the same in S-U and in Pb-Pb as a function of L and N_{part}

NA50 Collaboration Institutions

- Università del Piemonte Orientale, Alessandria, and INFN-Torino, Italy
- LAPP, CNRS-IN2P3, Annecy-le-Vieux, France
- LPC, Univ. Blaise Pascal and CNRS-IN2P3, Aubière, France
- IFA, Bucharest, Romania
- Università di Cagliari and INFN, Cagliari, Italy
- CERN, Geneva, Switzerland
- LIP, Lisbon, Portugal
- INR, Moscow, Russia
- IPN, Univ. de Paris-Sud and CNRS-IN2P3, Orsay, France
- Lab. Leprince-Ringuet, Ecole Polytechnique and CNRS-IN2P3, Palaiseau, France
- Università di Torino and INFN, Torino, Italy
- IPN, Univ. Claude Bernard Lyon-I and CNRS-IN2P3, Villeurbanne, France
- YerPhI, Yerevan, Armenia