Charged particle multiplicity in Pb-Pb collisions from NA50 experiment

F. Prino for the NA50 collaboration

International Workshop on Particle Multiplicity in Relativistic Heavy Ion Collisions Bari, 17-19 June 2004

Particle production in nuclear collisions

- Multiplicity = number of particles produced in the collision
 - 80-90% of the produced charged particles are pions
 - Related to the centrality of the collision
 - Related to the entropy of the system created in the collision
- Multicollision models:
 - Nucleus-nucleus collis.= superposition of nucleon-nucleon collis.

Soft processes

Small momentum transfer

Large distance

- \checkmark Interactions at the baryon level
- ✓ Scale like the number of participant nucleons (N_{part})

Particle momenta distributions

Transverse momentum (p_T) **Longitudinal** momentum (p_L)

Rapidity variable

$$y = \frac{1}{2} \cdot \ln \left(\frac{E + p_L}{E - p_L} \right)$$

Pseudorapidity variable

$$\eta = -\ln\left[\tan\left(\frac{9}{2}\right)\right] = \frac{1}{2} \cdot \ln\left(\frac{|\mathbf{p}| + p_L}{|\mathbf{p}| - p_L}\right)$$

• $\eta \approx y$ for large momenta

dN/dy ($dN/d\eta$) distributions carry information about energy density, longitudinal expansion and "stopping power"

NA50: experimental setup Study of muon pair production in Pb-Pb collisions

Trigger

DIMU

2 muon tracks

• MB

Non zero energy deposit in the ZDC

Pb beam

- 1998: 158 GeV/nucleon
- 1999: 40 GeV/nucleon
- Beam detectors
- Active target
 - Up to 7 Pb subtargets + Cherenkov counters

- Centrality detectors
 - EM Calorimeter (1.1 $<\eta_{lab}<2.3$)
 - + *Multiplicity Detector* (1.1 $<\eta_{lab}$ <4.2)
 - Zero Degree Calorimeter ($\eta_{lab} > 6.3$)
- Muon spectrometer (2.7 $<\eta_{lab}$ <3.9)
 - Magnet+MWPC+hodoscopes

The Multiplicity Detector (MD)

t0 cm

2 Planes (MD1, MD2)

- each plane made of 2 layers (up/down)
- 36 azimuthal sectors ($\Delta \phi = 10^{\circ}$)
- 192 radial strips ($\Delta \eta = 0.02$)
 - 6912 strips in each plane
 - Only 128 innermost strips used in this analysis

Silicon microstrip detector measuring the number and the angular distribution of charged particles produced in the collision

$dN/d\eta$ distributions vs. centrality (I)

Data from special low-intensity runs

Pb beam energy (GeV/nucleon)	Target	Distance target-MD1 (cm)	Target thickness	# of events analyzed
158	Pb	11.65	3 mm	48000
158	Pb	9.15	1 mm	18000
40	Pb	12.55	3 mm	35000

- Analysis method
 - Data selection:
 - ✓ Interaction trigger
 - ✓ Pile-up rejection
 - ✓ Upstream interaction rejection
 - ✓ Diagonal cut on the E_T - E_{ZDC} correlation
 - ✓ MD based target identification
 - Statistical method based on matching pairs of hits on MD1 and MD2

$dN/d\eta$ distributions vs. centrality (II)

- Centrality interval definition at 158 GeV/c:

✓ 2 independent centrality variables (E_T and E_{ZDC})

✓ Intervals expressed in terms of fraction of total inelastic cross section

$dN/d\eta$ distributions vs. centrality (III)

- Calculation of raw $dN_{ch}/d\eta$
 - Cluster (group of contiguous strips firing together) correction
 - Cluster size distribution not reproduced by a VENUS+GEANT simulation
 - > Dedicated MC, aimed at reproducing cluster size distribution observed in data
 - ✓ Performed separately in each η bin ($\Delta \eta$ =0.15) and in each centrality class

$dN/d\eta$ distributions vs. centrality (III)

- Calculation of primary $dN_{ch}/d\eta$.
 - ✓ Subtraction of the delta electron contribution (from GEANT).
 - > Max. 5% of the occupancy in the most peripheral bin.
 - ✓ Correction with secondary/primary ratio from VENUS+GEANT simulation.
 - VENUS+GEANT data reconstructed with same method as experimental data.
 - > 1.2 1.8 correction factor.
 - → Do not depend on centrality.
 → Depend on target thickness, target position, particular MD plane.
 - Unstable particles (K₀, Λ and hyperons) decays are already considered in VENUS, and therefore their decay products are defined as primary particles.
- Systematic error estimation

✓ 8% systematic error on primary charged multiplicity

$dN_{ch}/d\eta$ distributions at 158 GeV

Midrapidity value at 158 GeV /c

Midrapidity visible in the $dN/d\eta$ distributions:

- → No reflection around midrapididty needed
- $\rightarrow \eta_{\text{peak}}$ extracted from fit compatible with VENUS prediction ($\eta_{\text{peak}}=3.1$)

Gaussian width at 158 GeV /c

Gaussian width decreses with centrality:

→ stopping power effect

→ decreasing contribution of protons from target and projectile fragmentation

 $dN_{ch}/d\eta_{max}$ at 158 GeV/c

 $dN/d\eta$ at the peak scales linearly with $E_{_T}$ and $E_{_{ZDC}}$

→ no saturation or enhancement observed

$dN_{ch}/d\eta$ distributions at 40 GeV /c (II)

Gaussian width vs. energy

- Available phase space in rapidity increases with \sqrt{s}
- Fit with the simple scaling law: $\sigma_n = a + b \cdot \ln \sqrt{s}$
- Same \sqrt{s} dependence for all data

Evaluation of $N_{_{part}}$ and $N_{_{coll}}(I)$

- Glauber model calculations
 - Physical inputs:
 - ✓ Woods-Saxon density for Pb nucleus (2pF)→
 - $\checkmark \sigma_{in} = 30 \text{ mb}$
 - Numerical calculation of:

$$\rho = \frac{\rho_0}{1 + e^{(r - r_0)/C}}$$

$$c = 0.549 \text{ fm}$$

$$r_0 = 6.624 \text{ fm}$$

✓ Interaction probability, N_{part} , N_{coll} ... vs. impact parameter *b*

Evaluation of N_{part} and N_{coll} (II)

- E_T and E_{ZDC} parametrization

 ✓ E_T ∝ number of participants
 ✓ E_{ZDC} ∝ number of projectile spectators
 - q, w, α and δ form fit to MB spectra

Evaluation of $N_{_{part}}$ and $N_{_{coll}}(\mathrm{III})$

- Calculation of $< N_{part} >$ and $< N_{coll} >$ in each centrality class
 - + From distributions of N_{part} and N_{coll} in the E_T and E_{ZDC} intervals
 - Smearing effects due to calorimeter resolution included

Class	%	E_{ZDC}^{min} - E_{ZDC}^{max}	$< N_{part} >$	RMS	$< N_{coll} >$	RMS
	of c.s.	(GeV)		N_{part}		N_{coll}
1	0-5	0-9385	354	22	802	66
2	5-10	9385-13150	294	23	634	63
3	10-15	13150-16490	246	25	501	64
4	15-20	16490-19180	205	26	395	65
5	20-25	19180-21475	173	28	316	66
6	25-35	21475-24790	129	35	214	74

Class	%	E_T^{min} - E_T^{max}	$< N_{part} >$	RMS	$< N_{coll} >$	RMS
	of c.s.	(GeV)		N_{part}		N_{coll}
1	0-5	87.2-140.	352	25	796	73
2	5-10	71.5-87.2	294	26	632	72
3	10-15	58.7-71.5	245	23	498	61
4	15-20	48.9-58.7	203	20	392	52
5	20-25	40.9-48.9	169	19	309	44
6	25-35	29.6-40.9	127	20	213	45

Charged particle scaling at 158 GeV

Fit with the power law:

$$\left.\frac{dN}{d\eta}\right|_{\rm max} \propto N_{part}^{\alpha}$$

• $\alpha = 1.00 \pm 0.01 \pm 0.04$

 $\checkmark \alpha = 1.05$ -1.08 using a VENUS calculation of N_{part} $\checkmark \alpha = 1.02$ with N_{part} = 2.208 ·(1-E_{ZDC}/E_{BEAM})

- Fit with the power law: $\frac{dN}{d\eta} \propto N_{coll}^{\beta}$
 - $\beta = 0.75 \pm 0.02$
- Fit with the law:
 - dN $\propto A \cdot N_{part} + B \cdot N_{coll}$ • B compatible with zero $d\eta$
- **Conclusions:**
 - + N_{part} describes the centrality dependence of particle production¹⁰⁰
 - Hard processes play a negligible role at this energy •

Charged particle scaling at 40 GeV

Fit with the power law:

• α=1.02±0.02±0.06

Conclusions:

- As expected, no important hard process contribution at this energy
- Same N_{part} dependence at 158 and 40 GeV
- Soft processes account well for particle production at SPS energies

Yield per participant pair vs. centrality

• Yield per participant pair:

- → Only statistical error on $dN/d\eta$ + error on N_{part} shown in plot
- → Flat behaviour reflects the linear dependence of $dN/d\eta_{max}$ on N_{part}

Beam energy	\sqrt{s}	dN_{ch}
(A·GeV/c)	(GeV)	$\left \int d\eta \right _{\max}$
		$0.5 N_{part}$
40	8.77	1.18±0.03±0.15
150	172	
138	1/.3	2.49±0.03±0.20

Comparison with other experiments

- Conversion from $dN/d\eta|_{lab}$ to dN/dy and subsequently to $dN/d\eta|_{cm}$ done assuming:
 - At 158 GeV/c ($\sqrt{s}=17.3$ GeV): pions, protons and kaons relative yields from NA49
 - At 40 GeV/c ($\sqrt{s}=8.77$ GeV): pions, protons and kaons relative yields from VENUS 4.12

Yield per participant pair vs. \sqrt{s}

Integrated yield per participant pair

Heavy ion data does not follow the e⁺e⁻ trend over the whole energy range:

- \rightarrow below pp and e⁺e⁻ data at AGS energy
- \rightarrow cross through pp data at SPS energy
- \rightarrow joins e⁺e⁻ data above top SPS energy

Conclusions

- Particle pseudorapidity distribution vs. centrality measured by NA50 experiment.
 - At 158 GeV/c with 2 independent centrality estimators (E_T, E_{ZDC}).
 - At 40 GeV/c with 1 centrality estimator (E_T).
- Use of 4 detector planes + 2 different target positions.
 - Cross check of analysis procedure.
 - Wide η coverage (\rightarrow no reflection around midrapidity needed).
- Gaussian width:
 - Decreases with centrality (stopping power effect).
 - Increases logarythmically with \sqrt{s} (phase space effect).
- Glauber calculation of N_{part} and N_{coll}:
 - + Linear dependence of $dN/d\eta|_{max}$ on $N_{part.}$
 - No important role of hard interactions (N_{coll}) at both energies.
- Yield per participant pair.
 - ✓ At 40 GeV/c ($\sqrt{s}=8.77$ GeV) ✓ At 158 GeV/c ($\sqrt{s}=17.3$ GeV) <u>compatible</u> with fit to nucleon-nucleon interactions. <u>not compatible</u> with fit to nucleon-nucleon interactions.
 - Steep increase of particle yield in central Pb-Pb collisions between 40 and 158 GeV/c not described by the simple energy scaling observed in nucleon nucleon collisions.