Charmonia production at the CERN/SPS

G. Borges, LIP/Lisbon, Portugal NA50 Collaboration

Outline

- NA50 experiment overview
 - Experimental setup
 - Analysis procedure
- NEW III J/ψ normal nuclear absorption: The Reference
- Pb-Pb anomalous suppression: Final results
 - Comparison with lighter systems
- **The** ψ absorption
 - Pb-Pb $B_{\mu\mu}\sigma(\psi) / \sigma(DY)$ results
- UPGRADE !!! Pb-Pb $B_{\mu\mu}\sigma(\psi) / B_{\mu\mu}\sigma(J/\psi)$ results
 - Lighter systems comparison

Conclusions

Developments since Moriond 2004

- Charmonia Pb-Pb data analysis:
 - All results analysed using GRV 94 LO set of PDFs.
 - Consistent computation of the Drell-Yan shape
 - Average between 1998 and 2000 results.
- The reference:
 - Coherent comparison between all NA50 p-A data samples to extract the absorption cross section.
 - Purely determined using p-A nucleus collisions.
 - Previously, S-U results were also included under the assumption that they were behaving normally.
 - Inclusion of the neutron halo effect.
 - Neutrons inside a Pb nucleus have different spatial distributions from protons → DY cross-section will sligtly depend on centrality.

NA50 Dimuon spectrometer

Optimized for $J/\psi \to \mu^+ \mu^-$ detection

Kinematical domain

- $2.92 \le Y_{LAB} < 3.92$
- $|\cos(\theta_{\rm CS})| < 0.5$

Acceptances

- J/ψ : 12.42 ± 0.02 (0.17%)
- ψ´ :14.77 ± 0.03 (0.26%)
- DY_{2.9-4.5}:13.79 ± 0.05 (0.16%)

NA50 Pb-Pb data samples

Year	Energy (GeV)	Sub-targets	Target thickness	Intensity (10 ⁷ ions/b)	J/ψ (10³)
1995	158	7 (in air)	17 % λ _ι	3 x 10 ⁷	50
1996	158	7 (in air)	30 % λ _ι	5 x 10 ⁷	190
1998	158	1 (in air)	7 %	5.5 x 10 ⁷	49
2000	158	1 (in vacuum)	10 %	7 x 10 ⁷	129

1998 data sample

1 thin target avoids reinteractions and confirms charmonia production behaviour for central collisions.

2000 data sample

1 thin target in vacuum avoids Pb-Air interactions and confirms charmonia production behaviour for peripheral collisions.

The analysis method

Fit invariant mass spectrum for each centrality region.

Signal functional forms are obtained through Monte-Carlo generation and spectrometer simulation:

- DY and Open-Charm shapes from PYTHIA input with GRV 94 LO PDFs.
- J/ψ and ψ' shapes are dominated by experimental effects (~ 100 MeV/c² of mass resolution).

Combinatorial background is built from the measured like sign dimuon distributions.

Importance of p-A measurements

- J/ψ production in ligther systems is crucial.
 Are there abnormal effects in heavier systems?
- J/ψ is already considerably absorbed in p-A collisions (normal nuclear absorption):
 - Systematically measure of J/ψ yield as a function of nuclear size and determine it's surviving probability.

Build an absorption curve:

- Use a Glauber model to evaluate the expected number of J/ψ as a function of centrality in 158 GeV Pb-Pb interactions.
- Compare with Pb-Pb measurements.

NA50 p-A data samples

Year	Energy (GeV)	Targets	Target thickness	Intensity (10 ⁸ p/s)	J/ψ (10³)
96/98	450	Be,Al,Cu,Ag,W	26-39 % λ _l	4.0 - 13	350:800
98/00	450	Be, Al, Cu, Ag, W	26-39 % λ _ι	0.8 - 2.5	80:180
2000	400	Be,Al,Cu,Ag,W,Pb	26-39 % λ _ι	9.0 - 13	38:68

Large improvement in statistics compared to previous NA38 p-A data samples.

Last NA50 p-A runs were taken in a very short period of time with frequent target changes

 Allows to minimize possible systematic errors on the luminosity ammoung different targets.

P Gonçalo Borges @ Recontres de Moriond - La Thuile

J/\u03c6 production in p-A collisions (II)

NA50 only has p-A data at higher energies than 158 GeV:

Study $B_{\mu\mu}\sigma(J/\psi)/A$ results at different energies from NA51, NA50, NA38 (same dimuon spectrometer) and NA3 experiments.

- Data sets (at a given energy) present compatible σ_{abs} values.
- A simultaneous fit provides the J/ψ experimental rescaling factors to 200 GeV:
 - $\mathbf{N}_{200} / \mathbf{N}_{450} = 0.319 \pm 0.025$
 - $\mathbf{N}_{200} / \mathbf{N}_{400} = 0.348 \pm 0.027$
- The small rescaling which brings J/ψ from 200 to 158 GeV is done using the Schuler parametrization.
- DY is rescaled theoretically from 450 / 400 to 158 GeV using LO calculations.

□ NA38 200 GeV S-U $B_{\mu\mu}\sigma(J/\psi) / \sigma(DY_{2.9-4.5})$ results (alone): $\sigma_{abs}(S-U) = 7.05 \pm 3.03$ mb

Under the assumption that S-U was behaving normally:

 It was included with p-A results in a simultaneous Glauber fit

 σ_{abs} = 4.18 \pm 0.35 mb.

- Absorption curve normalization was given by S-U 200 GeV data.
- The factor which brings J/ψ from 200 to 158 GeV was obtained using Schuler parametrization.
- DY was rescaled theoretically from 200 to 158 GeV using LO calculations.

Present vs previous estimation

- Normal nuclear absorption curve doesn't change:
 - The much larger systematic error bar in our present estimation is imposed by the uncertainty of p-A $B_{\mu\mu}\sigma(J/\psi)$ normalizations at 200 GeV.

The J/\u03c6 anomalous suppression

□ $B_{\mu\mu}\sigma(J/\psi) / \sigma(DY_{2.9-4.5})$ Pb-Pb results do not follow the normal absorption as extrapolated from p-A systems.

Peripheral collisions:

 Compatible with the normal nuclear absorption.

□ Mid – centrality:

 Departure from the normal nuclear absorption.

Central collisions:

 No saturation at high centralities.

Other centrality estimators

Same behaviour is observed as a function of other centrality estimators (N_{ch} and E_{ZDC}).

Gonçalo Borges @ Recontres de Moriond - La Thuile

J/\u03c7/DY vs L: From pp to Pb-Pb

- **2** 20 years of J/ψ results from SPS experiments:
 - NA38, NA51 and NA50 (using same dimuon spectrometer)

L variable

- Mean free path crossed by J/ψ in nuclear matter. Good variable to compare p-A and A-B data (at different centralities)
- S-U collisions show good compatibility with the normal absorption curve

Pb-Pb collisions depart from normal absorption curve at mid centralities.

ψ'/DY and $\psi'/J/\psi$ vs E_T : Pb-Pb results

Strong ψ suppression w.r.t. DY as a function of centrality.

Charmonia ratio decreases by a 2.5 factor from peripheral to central collisions.

P Gonçalo Borges @ Recontres de Moriond - La Thuile

ψ' / DY vs L

- From $B'_{\mu\mu}\sigma(\psi) / \sigma(DY_{2.9-4.5})$ p-A results:
 - Deduce an absorption curve with $\sigma_{abs} = 7.60 \pm 1.12$ mb.
 - Same rescales to 158 GeV as used for J/ψ absorption curve.

- Different behaviour
 between p-A and A-B
 collisions.
- Strong ψ' absorption from peripheral to central A-B interactions.

Compatible ψ' suppression between S-U and Pb-Pb collisions.

ψ' / J/ψ vs L If a simple exponential parametrization is used to quantify the charmonia absorption difference in p-A data:

 $\sigma_0 \exp(-\rho \cdot L \cdot \dot{\Delta} \sigma_{abs}^{\rho L})$ $\Delta \sigma^{\rho L}_{abs} = 2.8 \pm 0.5 \text{ mb}$

The difference between full Glauber calculations is: $\Delta \sigma^{\text{Glb}}_{\text{abs}} = \sigma_{\text{abs}}(\psi') - \sigma_{\text{abs}}(J/\psi)$ $= 3.4 \pm 0.6 \text{ mb}$

The relative absorption between J/ψ and ψ' resonances is different from p-A to A-B data.

Charmonia results: Conclusions

Expected = Glauber absorption model

 $\sigma_{abs}(J/\psi) = 4.18 \pm 0.35 \text{ mb}$ $\sigma_{abs}(\psi') = 7.60 \pm 1.12 \text{ mb}$

 S-U and peripheral Pb-Pb (J/ψ)/DY results follow the absorption curve extrapolated from p-A measurements.

Pb-Pb central collisions show an anomalous (J/ψ)/DY suppression with respect to p-A behaviour.

ψ'/DY behaviour is the same in S-U
 and Pb-Pb interactions and not
 compatible with the one observed in
 p-A collisions.

 ψ ' anomalous suppression sets in earlier than the J/ ψ one.

NA50 passport

Who are we?

NA50 is a fixed target experiment from CERN/SPS.

What do we measure?

J/ψ yields in light (p-A and S-U) and heavy (Pb-Pb) systems interactions.

Why do we measure it?

 J/ψ suppression was predicted as a clear signature for Quark Gluon Plasma formation.

What do we observe?

 A strong and increasing suppression of J/ψ yield in Pb-Pb collisions as a function of centrality w.r.t. the expected behaviour deduced from lighter systems.

