J/ψ and ψ' productions in nucleus-nucleus collisions at the CERN-SPS

Helena Santos, LIP-Lisbon NA50 Collaboration

Outline

- Introduction
- NA50 experiment overview
- Analysis procedure
- Results in Pb-Pb collisions
- Results in lighter systems and comparisons
- Conclusions

Phenomenology of the Heavy Ion Collisions

Evolution of interacting matter

• Pre-equilibrium partonic system

- Quark Gluon Plasma
- Hadronization and freeze-out

 $J/\psi \ suppression \ by \\ Debye \ colour \ screening \\ is \ a \ strong \ signature \ of$

The NA50 Experiment

Kinematical Domain: $2.92 \le y_{lab} < 3.92$, $|\cos \theta_{CS}| < 0.5$

Acceptances

—	
J /ψ	$\textbf{12.42} \pm \textbf{0.02} \pm \textbf{0.17}~\textbf{\%}$
ψ'	14.77 \pm 0.03 \pm 0.26 %
DY _{2.9-4.5}	13.79 ± 0.05 – 0.16 %

Probing QCD with High Energy Nuclear Collisions

Acceptance: 1.9 $\leq \eta_{\text{lab}} \leq$ 4.2 for the Multiplicity Detector

1.1 $\leq \eta_{\text{lab}} \leq$ **2.3 for the Electromagnetic Calorimeter**

 $\eta_{\text{lab}} \geq$ 6.3 for the Zero Degree Calorimeter

Probing QCD with High Energy Nuclear Collisions

Hirschegg, January 16 - 22, 2005

Data samples review

NA50 uses proton and lead beams colliding on fixed targets.

The spectrometer is almost the same used in the previous NA38 experiment (study of p-A, O-Cu, O-U and S-U systems)

data number total number number beam of J/ψ of ψ' sample target of sub-targets intensity thickness (ions/burst) 3×10^{7} 1995 17% λ_T 7 (in air) 50000 5×10^7 30% λ_I 7 (in air) 1996 190000 5.5×10^{7} 7% λ_I 1998 1 (in air) 49000 380 7×10^7 **9.5%** λ_I 2000 1 (in vacuum) 129000 905

Data samples in Pb-Pb collisions

Data selection

- Upstream interactions in the beam hodoscope are rejected by dedicated detectors
- Interaction pileup is rejected
- In-target interactions are identified using the Multiplicity Detector:

 No Pb-air contamination in peripheral interactions

Re-analysis of Pb-Pb 1998 data

Efficient primary vertex in-target identification

Probing QCD with High Energy Nuclear Collisions

helena@lip.pt

Reference for charmonia production

Advantages:

- σ(DY) is proportional to the number of nucleon-nucleon collisions from p-p up to Pb-Pb (in the NA50 phase space, at least)
- Same selection criteria
- Same eventual biases and inefficiencies

 \rightarrow Good normalization for J/ψ and ψ'

Drawback: relatively poor statistics

The J/ ψ suppression

Results on $B_{\mu^+\mu^-}\sigma(J/\psi)/\sigma(DY_{2.9-4.5})$ as a function of E_T for Pb–Pb 2000 data

• The ratio of cross-sections decreases from peripheral to central collisions by a factor of ~2.5

• No saturation is seen for the most central reactions

✓ Statistical errors varying between 9% and 7%

✓ The overall systematic error stands between -1.4% and +3.8%

The J/\psi suppression Results on $B_{\mu^+\mu^-}\sigma(J/\psi)/\sigma(DY_{2.9-4.5})$ as a function of E_T for Pb–Pb 2000 and 1998 data

• Very good compatibility between the results from the two samples

Systematics under control —> average —> better accuracy

The normal nuclear absorption

Determine absorption reference at 158 GeV from p-A

Data from:

- > NA50 p-A at 400/450 GeV
- > NA51 p-p and p-d at 450 GeV

All available 200 GeV data (NA38) + p-p and p-Pt (NA3)

- Absolute J/ψ cross sections
- Independent fits are fully compatible
- Simultaneous fit leads to $\sigma_{abs} = 4.1 \pm 0.4$ mb and rescaling factor from 450 to 200 GeV
- Theoretical rescale from 200 to 158 GeV

J/ψ/DY in Pb-Pb with p-A reference as a function of E_T

The ratio σ(**J**/ψ)/σ(**DY**):

• Behaves "as p-A" for peripheral collisions

• Departs from the normal absorption at $E_T \approx 35$ GeV

• Becomes more and more abnormal for more and more central collisions

J/ψ/DY as a function of forward energy and charged multiplicity

3 independent estimators, E_T, E_{ZDC} and N_{ch}, confirm the same anomalous J/ψ suppression pattern

J/ψ/DY from p-p to Pb-Pb systems as a function of *L*

 J/ψ suffers:

Normal suppression in S-U and peripheral Pb-Pb

Anomalous suppression in central Pb-Pb

The ψ ' study

Probing QCD with High Energy Nuclear Collisions

Challenging due to:

- small dimuon cross section
- large suppression
- several dimuon sources overlap

• Structure functions chosen to simulate Drell-Yan induce up to 7% difference in ψ' normalizations

 Combinatorial Background is accurately measured from like-sign sample in each centrality region

♦ The uncertainty due to Open Charm semi-leptonic decays is <1.5%</p>

M (GeV/c²) Hirschegg, January 16 - 22, 2005

The ψ' suppression $B_{\mu^+\mu^-}\sigma(\psi')/\sigma(DY_{4.2-7.0}) \text{ and } B'_{\mu^+\mu^-}\sigma(\psi')/B_{\mu^+\mu^-}\sigma(J/\psi) \text{ as a function of}$ $E_{T} - \text{Average between Pb-Pb 2000 and 1998}$

• ψ ' is increasingly suppressed with respect to Drell-Yan

 The ratio of the two charmonium states decreases with centrality by a factor of 2.5 between peripheral and central collisions

Probing QCD with High Energy Nuclear Collisions

Hirschegg, January 16 - 22, 2005

ψ'/DY in p-A, S-U and Pb-Pb systems as a function of L

- Different behaviours between p-A and A-B collisions
- Strong suppression of ψ' between peripheral and central A-B interactions
- Same ψ ' suppression in S-U e Pb-Pb collisions as a function of centrality

Probing QCD with High Energy Nuclear Collisions

J/ ψ and ψ ' – measured over expected

In A-B collisions, the ψ ' departs from the nuclear absorption curve for less central reactions w.r.t. J/ψ

Conclusions – J/ ψ

1. σ(DY) is proportional to the number of nucleon-nucleon collisions from p-p up to Pb-Pb

- 2. The measurement of J/ψ production in p-A collisions at 450, 400 and 200 GeV provides reliable predictions of nuclear absorption cross section, $\sigma_{abs}^{J/\psi}$ (p-A), at 158 GeV
- 3. For S-U and peripheral Pb-Pb collisions, the ratio $\sigma(J/\psi)/\sigma(DY)$ follows the normal nuclear absorption (like p-A)
- 4. For Pb-Pb central collisions, J/ψ production departs from this normal behaviour. It exhibits an abnormal suppression, which increases with increasing centrality

Conclusions - ψ '

- **1.** ψ ' is strongly suppressed relatively to Drell-Yan as a function of E_T by a factor of 7 between peripheral and central collisions
- A steady decrease of the ratio between the two charmonium states as a function of E_T is observed, reaching a factor of 2.5
- 3. The ψ ' suppression pattern is the same in S-U and Pb-Pb collisions, and not compatible with the one exhibited in p-A reactions

A comparison between ψ ' and J/ψ suppressions, normalized to the suppression expected, shows that the ψ ' anomalous suppression sets in earlier than for J/ψ