Latest results on J/ ψ suppression

G. Borges, LIP -Lisbon

for the NA50 Collaboration

Alessandria, Annecy, Aubière, Bucharest, Cagliari, CERN,

Lisbon, Moscow, Orsay, Palaiseau, Torino, Villeurbanne, Yerevan

- The experimental apparatus
 → Main detectors and kinematical domain
- Published NA50 results on charmonium
- Goals and tools for year 2000 run
- The Drell-Yan process: The reference
- J/ ψ normal absorption: The baseline
- The anomalous J/ψ suppression as a function of: \hookrightarrow The transverse energy (E_T) \hookrightarrow The forward energy (E_{ZDC})
- Comparison with previous data takings
- Conclusions

Experimental setup

 J/ψ is detected via its decay into muon pairs $J/\psi \rightarrow \mu^+\mu^-$

Dimuon detection in:

 $\hookrightarrow 0 < y_{CM} < 1 \quad (2.92 < y_{Lab} < 3.92) \quad |\cos \theta_{CS}| < 0.5$

Acceptances:

 $\hookrightarrow \mathcal{A}_{J/\psi}$ = 13.5 %

 $\hookrightarrow A_{DY} = 14.5 \%$ (in 2.9 < $M_{\mu\mu}$ < 4.5 GeV/c²)

Set of counters in beam line:

 \hookrightarrow Beam Hodoscope, Anti-Halo detectors, B.H. interaction detector

Experimental setup

• Active target with Čerenkov counting blades

• Centrality detectors:

ightarrow Electromagnetic Calorimeter (EM) measures the neutral transverse energy of the collision in 1.1< η_{lab} <2.3

 \hookrightarrow Multiplicity Detector (MD) measures charged particles in 1.5< η_{lab} <3.9

 \hookrightarrow Zero Degree Calorimeter (ZDC) measures spectators energy in η_{lab} >6.3

• Feature

ightarrow Sharp decrease at E_T~40 GeV ightarrow No saturation of the ratio at high E_T ightarrow Normal absorption curve established using **our spectrometer** with p-p,p-d (NA51) and p-A,S-U interactions (NA38)

• A deeper understanding revealed:

NA50 PbPb runs

Data period	total target	sub-targets	target	beam intensity	J/ψ
	thickness		region	(ions/burst)	number
1995	17% λ_I	7	air	$3 imes 10^7$	50000
1996	$30\% \lambda_I$	7	air	$5 imes 10^7$	190000
1998	7% λ_I	1	air	$5.5 imes 10^7$	40000
2000	9.5 % λ_I	1	vacuum	$7 imes 10^7$	120000

• Year 2000 was devoted to check if PbPb peripheral collisions were really compatible with lighter systems:

 \hookrightarrow Target region was placed under vacuum up to the pre-absorber

 \hookrightarrow More statistics on several p-A systems were collected to establish a more precise normal absorption curve

Data reduction

- Selection criteria:
 - $\hookrightarrow \text{Rejection of } \textbf{parasitic interac-} \\ \textbf{tions} \text{ of the incoming Pb beam in the BH}$
 - \hookrightarrow Rejection of **double interactions** via a temporal signal analysis in the EMC
 - \hookrightarrow **Pile-up rejection** based in a 2σ E_T-E_{ZDC} correlation.
 - $\hookrightarrow New \ algorithm \ \text{for the location of} \\ \text{the primary interaction was developed based in the MD}$
 - ⇒ Higher efficiency for peripheral collisions than the usual target ID algorithm.

Drell-Yan : The reference for J/ ψ analysis

• **Drell-Yan** is proportional to the number of nucleon-nucleon collisions from p-p to Pb-Pb, as expected.

 $\sigma_{\rm DY} \propto ({\rm AB})^{lpha}$, with lpha = 1

• Good normalization for J/ψ

 \hookrightarrow Studying $\frac{J/\psi}{DY}$ as a function of centrality will give results free of systematic effects (same trigger)

J/ ψ normal absorption

- Normal nuclear absorption of charmonium states is measured using the same spectrometer:
 - \hookrightarrow NA51 p-p,p-d and NA38 S-U
 - \hookrightarrow present NA50 p-A data
- From a Glauber fit:
 → S-U still compatible with new NA50 p-A analysis.

 $\sigma^{\mathbf{J}/\psi}_{\mathbf{abs}}(\mathbf{pA},\mathbf{SU}) = \mathbf{4.3} \pm \mathbf{0.5} \ \mathbf{mb}$

 Absorption curve is extrapolated to 158 GeV as a function of E_T:
 → Normalization is given by SU data, rescaled from 200 → 158 GeV
 → There could be a 4% difference in the rescaling due to the involved theory

2000 results : $R_{CL}^{DY}(200 \rightarrow 158 \ GeV)$ with PYTHIA/MRS43 $\sigma(abs) = 4.3 \pm 0.5 \ mb$ 35 ▲ Pb-Pb 2000 - analysis A • Pb-Pb 2000 - analysis B 30 • Pb-Pb 2000 - analysis C 25 20 15 **•** 10 5 PRELIMINARY **MRS 43** 0 20 40 *60* 80 100 120 140 $E_{\tau}(GeV)$

3 different analysis:

- \hookrightarrow different labs and selection criteria
- \hookrightarrow different fitting methods and E_T bins
- \hookrightarrow Agreement within a few %
- Peripheral PbPb collisions: \hookrightarrow Seem to follow the pattern of normal nuclear absorption as deduced from pA and SU collisions

Stepwise pattern:

- \hookrightarrow Departure from absorption curve at mid-centrality
- \hookrightarrow No saturation at high E_T

VS E_T

PbPb

• Other centrality estimator E_{ZDC} : \hookrightarrow Forward energy of the spectators

results vs E_{ZDC}

• Comparisons:

 \hookrightarrow All published data in the same conditions as the preliminary 2000 data \hookrightarrow All data sets agree within a few % (except for most peripheral 96 data contaminated by Pb-air interactions)

• Same stepwise pattern as seen in E_T:

 $\hookrightarrow \text{Departure from absorption curve at} \\ \text{mid-centrality}$

 \hookrightarrow No saturation at low E_{ZDC}

A new DY reference

• Results of $\frac{J/\psi}{DY_{2.9-4.5}}$: $\hookrightarrow \sigma_{DY}^{2.9-4.5}$ depends of $\frac{dN_{DY}}{dM}$ extrapolation from the mass region where it is directly measured

 \hookrightarrow Different parton distributions lead to different results on $\frac{J/\psi}{DY_{2.9-4.5}}$

 $rac{\sigma_{
m DY}^{2.9-4.5}|_{
m MRS43}}{\sigma_{
m DY}^{2.9-4.5}|_{
m GRVLO}} \sim 10\%$

• Drell-Yan reference in a new mass region (4.2-7.0): \hookrightarrow Using as reference the directly measured $\sigma_{DY}^{4.2-7.0}$ leads to an unique result

PDF Independent results

 \hookrightarrow 2000 data analyzed with GRVLO and with MRS43 practically coincide

 $\hookrightarrow \frac{J/\psi}{DY_{4,2-7,0}}$ result does not depend anymore of the used structure functions

 \hookrightarrow The direct measured DY cross section is the same in both cases.

Comparison of year 2000 results with previous data

NA50 PbPb results in

→ Good compatibility between all data
 sets (except for 96 most peripheral
 points due to Pb-air contamination)

 \hookrightarrow A stepwise pattern of anomalous J/ ψ suppression is seen in all Pb-Pb data:

★ Departure from the normal absorption curve at $E_T \sim 40$ GeV

★ Steady decrease of $\frac{J/\psi}{DY_{4,2-7,0}}$ observed for the most central PbPb collisions

Preliminary results from last PbPb NA50 run, with target in vacuum:

- Confirms the anomalous J/ψ suppression:
 → Agreement with previous analysis, using either E_T or E_{ZDC} as a centrality estimator
 → The same pattern as seen in previous NA50 results
 → No saturation at high E_T
- Confirms the departure from an improved normal nuclear absorption curve as determined from pA and SU interactions, all measured using the same spectrometer.
- Peripheral PbPb collisions seem to be compatible with the normal absorption coming from lighter systems.