Recent results on anomalous J/ψ suppression in Pb-Pb collisions at 158 GeV/c per nucleon

H. Santos, LIP-Lisbon, for the NA50 Collaboration

¹ Università del Piemonte Orientale, Alessandria and INFN-Torino, Italy
 ² LAPP, CNRS-IN2P3, Annecy-le-Vieux, France
 ³ LPC, Univ. Blaise Pascal and CNRS-IN2P3, Aubière, France
 ⁴ IFA, Bucharest, Romania
 ⁵ Università di Cagliari/INFN, Cagliari, Italy
 ⁶ CERN, Geneva, Switzerland
 ⁷ LIP, Lisbon, Portugal
 ⁸ INR, Moscow, Russia
 ⁹ IPN, Univ. de Paris-Sud and CNRS-IN2P3, Orsay, France
 ¹⁰ Laboratoire Leprince-Ringuet, Ecole Polytechnique and CNRS-IN2P3, Palaiseau, France
 ¹¹ Università di Torino/INFN, Torino, Italy

Outline

- NA50 Dimuon Spectrometer
- Before 2000 The state of the art
- Goals of the Pb-Pb2000 data taking
- Standard Analysis Procedure
- Pb-Pb2000 Results
- Summary

The NA50 Experiment

The main goal is to measure J/ψ and Drell-Yan yields in order to search for the

formation of the Quark Gluon Plasma

The Dimuon Spectrometer

Kinematical Domain: $0 \le y_{CM} < 1$ $(2.92 \le y_{lab} < 3.92)$ $| \cos\theta_{CS} | < 0.5$ Acceptances: $Acc(J/\psi) = 13.5\%$ Acc(DY) = 14.5% (in $2.9 \le M_{\mu\mu} < 4.5 \ GeV/c^2$)

Beam Hodoscope (BH): Identifies and counts the incoming ions

Collision centrality measured simultaneously by neutral transverse energy, forward energy and charged particle multiplicities

Before 2000 - The state of the art

NA50 is an upgrade of the NA38 spectrometer and uses proton and lead

beams colliding on fix targets

Main improvements

- \diamond Magnetic current increased from 4000A to 7000A
 - \longrightarrow better mass resolution for high masses (3.3% for J/ψ)
- ♦ Additional centrality detectors: ZDC and MD

data period	total tar- get thick-	number of sub-	target region	beam intensity	number of J/ψ
	ness	targets		(ions/burst)	
1995	17 % λ_I	7	air	3×10^7	50000
1996	30 % λ_I	7	air	$5 imes 10^7$	190000
1998	7 % λ_I	1	air	$5.5 imes 10^7$	40000

Before 2000 - The state of the art (2)

Reference for J/ψ production: Drell-Yan

- σ(DY) is proportional to the number of nucleon-nucleon collisions from p-p up to
 Pb-Pb
 - \hookrightarrow Good normalization for $\sigma(J/\psi)$

Before 2000 - The state of the art (3)

$J/\psi/DY$ as a function of L

- *L* is the mean free path length crossed by the *cc* pair in the nuclear matter
- Clear departure of $J/\psi/DY$ from the absorption curve at

L = 8 fm

Before 2000 - The state of the art (4)

$J/\psi/DY$ as a function of E_T

 The absorption curve fits our lighter systems:

NA51 and NA38 p-A and S-U

- Sharp decrease of $J/\psi/DY$ at \approx 40 GeV
- No saturation of $J/\psi/DY$ at high E_T

The last 2000 data taking

• Goal of Pb-Pb 2000 run:

To investigate peripheral Pb-Pb collisions

- \hookrightarrow The target region up to the pre-absorber (BeO) is placed in vacuum
- ♦ 1 single target with 9.5% λ_I (in vacuum)
 ♦ Beam intensity = 7 × 10⁷ ions/burst
- $\diamond pprox$ 120000 J/ψ collected

Pb-Pb00 - Data Selection

- Interactions in the Beam Hodoscope (BH) and upstream from the target are rejected by a BH interaction detector and Anti-halo counters
- Primary interaction location: Two planes of silicon microstrip detectors, MD1 and MD2, identify target interactions

• Residual pileup interactions are rejected by $E_T - E_{ZDC}$ correlation

Standard Analysis Procedure

- Final fit performed for $M > 2.9 \ GeV/c^2$
- $J/\psi, \psi', DY$ and $D\bar{D}$ shapes obtained by Monte Carlo
- Combinatorial background from pion and kaon decays is extracted from like-signs pairs, using:

 $N_{BG} = 2\sqrt{N^{++}N^{--}}$

The J/ψ normal absorption

New NA50 high statistics p-A data combined with reanalysis of NA38 S-U data constitutes a new baseline to check the behaviour of anomalous J/ψ suppression against normal nuclear absorption

• Using a Glauber model fit, the absorption cross-section for J/ψ obtained is $\sigma_{abs} = 4.3 \pm 0.5 \ mb$

Transverse energy, E_T , used as the centrality collision estimator

- Independent analyses from 3
 Laboratories (different data selections and fit methods) agree within few percent
- Peripheral collisions are in agreement with the new absorption curve
- Departure of $J/\psi/DY$ at mid-centrality from the absorption curve
- No saturation at high E_T

Pb-Pb 2000 Results (2)

Forward energy, E_{ZDC} , used as the centrality collision estimator

- 2000 data in good agreement with published analyses (except for most peripheral collisions, probably due to Pb-air interactions in 1996 setup conditions)
- Departure of $J/\psi/DY$ at mid-centrality from the absorption curve
- No saturation at low E_{ZDC}

XXXVIIIth Recontres de Moriond - QCD and Hadronic Interactions

Pb-Pb2000 - New reference: Drell-Yan in 4.2-7.0 GeV/c 2

In the same invariant mass range (2.9-4.5 GeV/c 2) muons from J/ψ and

Drell-Yan have similar features, namely acceptance and momentum.

Nevertheless, different structure functions chosen to generate Drell-Yan lead to different mass distributions

- σ_{DY} (2.9-4.5) is determined by the measured σ_{DY} (4.2-7.0), but MRS 43 and GRV LO have different mass distributions \Rightarrow different $J/\psi/DY_{2.9-4.5}$ ratios
- Both structure functions give the same σ_{DY} in the measured region: 4.2-7.0 GeV/c²

 \Rightarrow same $J/\psi/DY_{4.2-7.0}$ ratios

Pb-Pb2000 - New reference: Drell-Yan in 4.2-7.0 GeV/c² (2)

Comparison between ψ/DY ratios fitted with Drell-Yan obtained with

GRV LO and MRS 43 structure functions

In 4.2-7.0 mass domain, the $J/\psi/DY$ ratio does not depend on parton

distribution functions

Pb-Pb Results: DY(4.2-7.0)

Transverse energy, E_T , used as the centrality collision estimator

- $J/\psi/DY$ ratios are independent on PDF chosen to generate Drell-Yan
- Comparison with previous data takings shows good agreement,
 (except for the most peripheral point in 1996)

- Before 2000, NA50 results for lead-lead collisions show an anomalous suppression of J/ψ as a function of L, E_T and E_{ZDC}
- The Pb-Pb 2000 data, with the target region placed in vacuum, shows:
 - The peripheral points are in agreement with the new absorption curve (our lighter systems)
 - \diamond Departure of $J/\psi/DY$ from the absorption curve at mid-centrality
 - \diamond No visible saturation of $J/\psi/DY$ ratio at high E_T
- A new Drell-Yan reference (not PDF dependent) is taken: $4.2 - 7.0 GeV/c^2$

 \hookrightarrow A good agreement is observed among all Pb-Pb data