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An explicit analytical formula for the dependence of the induced charge on the
thickness of diamond detector has been derived based on a simplified model, i.e., the so-
called linear model, in which the local mean free path of the electrons and holes is assumed
to increase linearly with the depth measured from the substrate side. The formula was
found to reproduce the general trend of the charge measured on the latest sample at two
different thickness reasonably well. It has been found that the induced charge is
significantly dependent on the thickness of the diamond and which portion in the depth is
used. Conversely the formula provides the basis for evaluating the growth process.  The
induced charge has been found to be independent of the relative orientation of the applied
electric field.  It is encouraging to find that the model predicts that the latest samples of
diamond are close in their growth parameters to what is needed to create large enough
signal for a microvertex detector when they are grown properly and lapped down to 400
µm which is equivalent to the canonical 300 µm of silicon microvertex detector sensors in
terms of radiation length.

   INTRODUCTION    

For a diamond detector it is important to know the dependence of the induced
charge signal on its thickness and also which part in the depth out of the original as-grown
blank is used.  Such information are needed to find out plausible recipe, a combination of
many parameters,  for diamond growth. The objective is to maximize the signal for a
diamond detector with limited thickness.  If it is for microvertex detector, the canonical
thickness is 400 µm which is, in terms of radiation length, equivalent to 300 µm of silicon,
the conventional material for microvertex detector,.

In the following, we attempt to derive an analytical formula of the dependence of
the induced charge in a diamond detector on its thickness.  We take so-called linear model
which is believed to be a reasonable assumption of how the electron/hole transmission
increases with the thickness of CVD diamond layer.

Throughout the discussion, the following simplification  is made:
A) The electrode on both sides of a flat diamond layer are infinitely wide so that the
     transmission of the electrons and holes created by the passage of minimum ionizing
     particles is regarded to be perpendicular to the electrode planes.
B) The diamond material is assumed to be laterally uniform.
C) Minimum ionizing particles are passing through the diamond layer perpendicularly.
D) The energy deposit per unit path length is constant ignoring particle-by-particle
     fluctuation and the fluctuation  along the path length.

It is obvious that, under the simplified geometry postulated above, the induced
charge due to charge motion within diamond layer is nothing but the mirror image  charge
moving from one electrode to another via the conductor between the two, as depicted in the
cartoon shown in Figs. 1 a and b. The charge induced  on the electrodes is the current
flowed through the outside conductor that connects1 the two electrodes integrated over the
                                                
1 The connection can be via an amplifier and or through ground. Simply the two electrodes have to be
  ultimately connected electrically.
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time period of the electron and or hole motion within the diamond. If charge Q travels the
complete path inside the diamond layer from one electrode to the other as shown in Fig.
1b, the corresponding induced charge is Q.
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Fig. 1.  Charge Q- is deposited inside the diamond layer close to the bottom
electrode.  A mirror image Q+ is induced on the bottom electrode. Due to the applied electric
filed, the charge Q-  drifts towards the top electrode. The mirror image Q+  simultaneously
flow through the connection between two electrodes towards the top electrode. When the
charge motion is completed, the induced charge, i.e. the current i  integrated over the period
of the travel,  is Q- . The direction of the current is as if the charge Q-  inside the diamond
has flowed out from the top electrode. 

For the sake of the completeness of the argument, it is worth noting that in case of
the tracking detector we can consider that the charge is deposited initially without making
any signal.  It is because the charges of the electrons and holes conveniently cancels each
other locally at the initial moment of the ionization by the traversing charged particle. Only
after they start moving apart from each other, the charge is induced on the elctrodes.

Therefore the induced charge is a product of the charge inside the diamond layer
and the distance it traveled divided by the distance between two electrodes.  Because of the
assumption made above, the field inside the diamond layer is uniform and therefore the
induced charge is not a function of the depth where the charge is moving.

Since the charge is induced on the electrodes solely due to the charge motion within
the material,  whether or not the charge is actually transmitted  to the electrode does not
affect the induced signal. It is only a matter of long time constant effect if the charge stays
at the surface of the electrode.

Another intriguing aspect of this argument is that the induced charge from either
side of double-sided detector is the same as the charge from a single sided detector. It is
because the charge is the result of the integration of the charge flowing through the
conductor that connect the two electrodes and the “double-siding” is only a matter of
picking-off the same current twice. The cartoon below illustrates such configuration.
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Fig. 2.  Double-sided  detector configuration.
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Based on the above notion, the    charge,        dQ       ind        (       x’, x        ), induced     on the electrodes by
the      motion by        ∆        x      of the    charge,        d Q       (       x’, x        ), created at depth        x’        and moving at        x      is
expressed as follows:

dQind (x’, x ) =C dV (1)

= 
1

T

dQ x x

dxdx
x x

r

( ' , )

'
'∆ ∆ (2)

where  C  = capacitance
Tr  =  thickness of diamond layer.
The charge could move towards the electrode on the growth side  or  towards the

electrode on the substrate side  depending on the sign of the charge and the direction of the
applied voltage.  First we consider the case in which the charge moves towards growth side
electrode, or in other words, along with the growing charge absorption length.

We develop the formulae step by step although it is a matter of trivial integration.
There are three steps of integration:
a) integration over the charge drift length to calculate the charge attenuation from the point
    of the charge creation and the point where the charge motion induces the signal charge on
    the electrode,
b) integration over the charge drift length to calculate the induced charge corresponding to
    the  entire drift of the charge form the point of creation to the electrode on the surface,
c) integration over the penetrating minimum ionizing track.

    LINEAR MODEL CALCULATION

    A) Charge moves towards growth side electrode   .

It is natural to assume locally an exponential behavior of the charge absorption by
traps.

Then the charge created at depth x’ , dQ0 (x’ ),  is attenuated cascadedly by local
absorption length λ (x )  (x  ≥x’ ) .
d Q (x’, x )

=dQ0 (x’ ) 
  
limit

x∆ →0
 [exp −








∆x

xλ( ' )
exp −

+








∆
∆

x

x xλ( ' )
exp −

+








∆
∆

x

x xλ( ' )2
••• exp −








∆x

xλ( )
]

= dQ0 (x’ ) 
  
limit

x∆ →0
  exp − +

+
+

+
+ +


















1 1 1

2

1

λ λ λ λ( ' ) ( ' ) ( ' )
• • • • • •

( )x x x x x x
x

∆ ∆
∆

= dQ0 (x’ )  exp { -
  

d
l x

x l
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Taking “linear model”, we assume that the  local charge absorption length λ (x )  is
linearly dependent on the depth x       measured from the original substrate side surface:    

λ   (x) = c  x        (4)

with a constant c .
Then the above integration is executed as follows:
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.        (5)

Therefore

d Q (x’, x ) = d Q0 (x’)  exp{
  
ln

x

x

c'





1

}

= d Q0 (x’) 
x

x

c'





1

.       (6)

Define  T  = Total growth thickness2.
 T0 = thickness lapped-off from substrate side.

The charge induced on the electrodes from the charge created  at depth x’, d
Qind (x’), is the result of integration of the local charge obtained above, d Q (x’, x ), over
the path length x  of the created charge from x’ up to the surface at T.

 dQind(x’)  =  
1

0T T−
dQ x x dx

x x

T
( ' , )

'=∫  

       = 
1

0
0

1

T T
dQ x

x

xx x

T c

−




=∫ ( ' )
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  = 
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0T T−
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1

c   x dxc
x x

T
( )−

=∫
1

'
     (7)

    CASE a)    c ≠ 1:

dQind(x’) = 
1

0T T−
 dQ0(x’)  2 1
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where dQ0(x’) = Q0dx’     (9)
with Q0 = charge created per unit path length of minimum ionizing particle.

The total induced charge Qind  is then obtained by integrating the above formula over
the path length x’  of the traversing minimum ionizing particle.

                                                
2 If the growth side  is also lapped, T   is the depth of the surface of the final sample   
measured from the substrate side.
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***********************************************************

or = 
Q T

T

T

0

01 − 





1

1
1

1
1−



 +



c c

1

2
1

1

2
10

2
0

2
0

1
1

+ 













− − 













− 

















+T

T c

T

T

T

T

c

= Q 0 T  f c
T

T
( , )0  .      (11)

    ***********

with a universal dimensionless shape factor f c
T

T
( , )0  with a parameter c  and a

dimensionless quantity T0 /T  :

f c
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      ***********************************************************

Thus the induced charge Qind  is linearly dependent on T  modified by the universal function

f c
T

T
( , )0 .  f c

T

T
( , )0  is plotted against T0/T  in Fig. 3.

The curves are bounded by the     upper bound for    c = ∞ indicated by a straight line

f c
T

T
( , )= ∞ 0   =

1
2

1 0−





T

T
.      (13)

The shape differences among the curves for different values of c  is more apparent  in the

form  ( ) ( , )1
1 0+
c

f c
T

T
 which is conveniently  normalized to 0.5 at 

T

T
0 1=  as plotted against

T0 /T   in Fig. 4  for various values of c .  As intuitively expected, the contribution from
deeper part of the layer grows with c.
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Fig. 3.  Universal, dimesnionless shape factor of induced charge.
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    CASE b)  c = 1 :

       dQind(x’) = 
1

0T T−
dQ0(x’) x’ 

1

x
dx

x x
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=∫ '

= 
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T[ ] '
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   ******************************************************

It should be noted that, even though the above formula appears different from
formula (11), the result is continuous around c  = 1 .
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Fig. 5.  Plot of the induced charge around the singularity at c =1.    Curves for c  = 1 is from
formula (15) while curves for c  = 0.9 and 1.1  are calculated from formula (11).
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Fig. 53 is a plot of the induced charge for c  = 1  derived from formula (15)
together with the results for c  = 0.9  and 1.1 derived from formula (11) derived for c  ≠ 1.

    B) Charge moves towards substrate side electrode.

In this case, charge is created at depth x’  and moves backward, i.e., x x≤ ' , with
the same coordinate system as the above in which x  increases from 0 at substrate side
surface and T  at the growth side surface.

Therefore, the formula for the charge attenuation is now:

d Q (x’, x )
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Taking the same linear  form of the charge absorption length λ (x )

λ (x ) = cx

as formula (4),  the integral becomes
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d
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  (Note: The integration is from l =x  to l =x’.)
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.      (17)

Therefore

d Q (x’, x ) = d Q0 (x’) 
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∴  d Qind (x’)  = 
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3 The unit for the induced charge  in the graphs throughout this note is e, the electron charge, times the
  number of e-h  pairs / mm from a minimum ionizing particle.  This unit is identical to “collection
 distance” in units of mm.  Therefore a factor of  3,600 electrons / 0.1 mm translates this to the number of
  electrons.
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    CASE a)    c ≠ 1:
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   ***********************************************

    The formula is exactly the same as (10) for the case in which the charge
    moves towards growth side electrode.

    Therefore the polarity of the electrode does not affect the size of the
   signal   4   .   

                                                
4 The effect of the direction of the electron motion on the position resolution with respect to the strips in a
strip detector is out of the scope of this discussion.
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    C) Total induced charge from electron-hole pairs   .

Naturally the charge induced from the     holes    moving in the direction opposite to the
electron motion is    additive    to the charge induced by the electron motion.  Based on the
above finding, the added signal is not dependent on the relative polarity of the applied field
and is described by two coefficients ce  and ch, for electrons and holes, respectively.

Therefore the    charge induced by electron-hole pairs    ionized by minimum ionizing
particles is a sum of two components as follows:

Qinduced
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or, using formula (12),

Qinduced
e h pairss− = Q0T  f c

T

T
f c

T

Te h( , ) ( , )0 0+







    (23)

***************************

where ce = Linear coefficient of the absorption length for electrons
ch = Linear coefficient of the absorption length for holes.

As discussed in the following section, a practical use of the above formula is to
assume the same value of c for both of the components. In Fig. 6, as an example, curves
for ce = ch = 0.1, 0.2, 0.3, and 0.4, for various as-grown thickness are plotted.  It is seen
that there is a mild peaking and the induced charge increases if the inefficient substrate side
is lapped off.

An immediate question that follows is what condition is required to produce a large
enough signal from     ~400 µm thick     diamond ( As mentioned earlier,  400 µm of diamond is
equivalent to a canonical 300 µm thick silicon layer I terms of radiation length.)  Due to the
smaller dielectric constant of diamond compared to that of silicon, we assume  electronics
    noise of ~800  electrons.     In order to achieve     S/N         ≈10/1              at the most probable peak     of the
Landau-like distribution,  the induced charge needs to be ~ 8000 electrons at the most
probable peak.  ( Although the induced charge we have derived in the discussion so far can
be interpreted as either the average or the most probable peak value, we take it as the former
following the customary definition of collection distance. )  The ratio of the average to  the
most probable peak of the true Landau distribution of the energy deposit by a minimum
ionizing particle is ~1.2 based on GEANT simulation.  Therefore the average signal for
S/N ≈ 10/1 is ~10,000  electrons.  From Fig. 6, it is seen that such signal can be obtained
from diamond layer grown to 1 mm to 2 mm depending on the value of c.  Some examples
are listed in Table 2.
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Table 2. Examples of parameter sets for     400 µm thick     diamond layer to achieve 
<Qind >≈    10,000 electrons   .

ce =ch T <Qind >
                                                   e•Ne-h               pairs      /mm                  electrons   5            
0.2 1.5 mm 0.254   9,140

2.0 mm 0.285 10,260
0.3 1.5 mm 0.292 10,510

2.0 mm 0.317 11,410
0.4 1.0 mm 0.274   9,860

1.5 mm 0.314 11,300
                            2.0 mm                     0.335                                   12,060                 

This is the range of the value of c  we have already been observing, as discussed later.
.

In Fig. 6, it should be noted that the end points of the curves corresponding to T0
=0 lie on a straight line

Qind   (T0 =0 ) = 
Q

c

T0

1
1+

     (24)

                                                
5 A caution needs to be taken for the ratio between average and the most probable peak of the signal. The
  ratio depends on the uniformity of the diamond layer and if it is not ideal, the ratio needs to be taken much
  larger and hence larger number for the average signal.
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as can be calculated from formula (23) for T0  = 0 . This is because the shape factor

f c
T

T
( , )0  becomes 0.5 for T0 = 0  as shown in (13).

No data points are supposed to lie below these lines if the growth condition is the
same. Such measurement at the end point, i.e.    the as-grown point, is convenient to find the
   coefficient       c       .

    D) Practical application   

One of the features of diamond is that the mobility of the holes is large, namely 67
% of that of electrons.  Therefore we need to take account of the contribution from hole
motion even in the case of short shaping times of amplifier.

As discussed in later sections for the case of real samples, we are definitely
observing the contribution from holes. The     observed charge at        T       -       T        0        = 0.4 mm ( 0.2 mm
   )is about the same (~140% ) as the maximum limit (      c        =         ∞ )       for electrons alone   .  It means
that there is  a significant contribution from holes.

In principle, a special measurement, in which finely collimated beam of minimum
ionizing particles is injected into the diamond layer parallel to the surface, so that  ionization
localized in the direction perpendicular to the layer takes place, can resolve two
components.

Otherwise, two components are indistinguishably additive to each other in the
ordinary measurement of the charge against thickness as can be easily understood from
Figs. 3 and 4. The dependence of the induced charge on the film thickness is a smooth
function and mildly dependent on the value of the coefficient  c  within the range we are
observing in the latest samples6.

From these figures, it is imaginable that the sum of two components with two
different values of c, one large and another small, is similar to the sum of two components
both with middle range value of c. Figs. 7a and b demonstrate such cases.  In Fig. 7a
(b), the sum of two components, one with  ce =0.2 (0.4) and another with ch =0.1 (0.2) is
compared with the sum of two components with the same value that is the mean of the
former two values, ce = ch = 0.15 (0.3).  A further fine tuning of the effective coefficients
will diminish the differences.  Therefore, a practical application of the formula we have
derived is to assume an effective common coefficient for both of the components and
simply multiply the formula  (11) for electrons by a factor of  2.

                                                
6 DBDS#39: ce =ch =0.12  equivalent .
  DBDS#73: ce =ch =0.24  equivalent .
  DBDS#55: ce =ch =0.30  equivalent .
  DBDS#86: ce =ch =0.48  equivalent .
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Fig. 7a.   Comparison between the induced charge for c e  = c h  = 0.15 and the charge for c e  = 0.2
 and c h  = 0.1.
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    EXTREME CASES

It is useful to consider extreme cases to know the bound of the reality.  We consider
two cases:
A) infinite absorption length,
B) finite constant absorption length throughout the diamond thickness.

    A) Infinite absorption length.   

λ ( )x = ∞  .      (25)

The induced charge is the product of the geometrical mean free path and the charge
of the electrons and holes created uniformly over the diamond thickness, divided by the
total thickness.  Since the geometrical mean free path is half of the total thickness, the
induced charge is

Q ind = 
1 1

20
0 0 0 0T T

T T Q Q T Telectron hole

−
− +( ) −( )( ) .

= 
1

2 0 0 0( )T T Q Qelectron hole− +( ) .

Here   Qelectron
0      and Qhole

0  are the electron charge and hole charge created by the traversing
minimum ionizing particle per unit length in the diamond layer.  Since they are equal,

Q ind =   (T-T0 )Q0      (26)

with Q0 = e  x  Number of electron-hole pairs in diamond per unit length
= ~3600 e  / 100 µm.

It is obvious that (22) can be also derived by putting c  = ∞ into (20).
This is the absolute limit of the induced charge that can be observed from a

diamond detector.  Naturally the thicker the diamond film the greater the observed signal is.

    B) Finite constant absorption length.   

λ  (x ) = λ 0 : constant.      (27)

Replacing the λ  (x ) in equation (3) by the above expression, we obtain

d Q ind(x’,x) = 
  
d Q x d

x

x

0
0

1
( ' ) exp

'
−







=∫λ

l
l

= d Q x
x x

0
0

( ' ) exp
'− −






λ

.      (28)

To simplify the expression, we take T0  = 0  without losing generality. Therefore,
equation (7) becomes

d Q ind (x’) =
1

0
0T

d Q x
x x

x x

T
( ' )exp

'
'=∫ − −



λ
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= 
λ

λ
0

0
0

1
T

d Q x
T x

( ' ) exp
'− − −
















.           (29)

∴  Qind
er = 

λ
λ

0 0

0

1
0

Q

T

T x
dx

x T

T
− − −















=∫ exp
'

'
'

= λ λ
λ0 0

0

0

1 1Q
T

T− − −






























exp .      (30)

Qind
e h pair− = 2 λ λ

λ0 0
0

0

1 1Q
T

T− − −






























exp .      (31)

  *******************************

Fig. 8   is a plot of the induced charge derived from the above formula in a
universal form as a function of T /λ 0 .
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Fig. 8.    Universal curve for the induced charge for constant mean free path
 against dimensionless variable T/λo..
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Intuitively, when T   is much smaller than λ0 , the charge grows linearly as ~Q0T

with T because the mean free path is half of T  as discussed for the case of λ   = ∞
( formula (26) ).  When T becomes much greater than λ 0 , it is expected that the mean free

path is approximately λ0 irrespective of where the charge is created.  Therefore the induced
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charge asymptotically approaches  constant value 2λ0Q0  while the factor T for the initial
minimum ionizing track length and 1/T  factor for the charge induction cancels out.

Such intuitive picture for the extreme end of the range of  the values of T /λ0 is

consistent with what can be calculated from formula (31).  For small value of T /λ0, the
first and the second term of the series expansion of  the exponential term are canceled and
the remaining third term results in Q0T   as intuitively expected. For the large value of T /λ0

the result is obvious.

In Fig. 9,   formula (31) is plotted against T with  various values of λ0 .
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Fig.9.   Induced charge for constant mean free path.



17

    APPLICATION TO REAL SAMPLES

As discussed before, a single effective charge absorption coefficient common to
both the electrons and holes, assuming that the contributions are equal, appeared to be
sufficient to reproduce a true behavior for wide range of the relative proportion of the two
components and also the value of c.

The procedure to find the coefficient c  is to equate the measured charge to the
formula (11) times 2 for the assumption of c e = c h = c :

2 0
0Q T f c

T

T
QMeasured,



 =   .     (32)

Note that QMeasured can be expressed as a product of Q0 and customarily used charge
collection distance  dc:

QMeasured = Q0 • dc .     (33)

Therefore the above equation becomes :

2 0f c
T

T

d

T
c,



 =  .         (34)

In the following we examine two latest samples DBDS #39, #73, and rather old
#55. Data are taken from “Report on DeBeers Samples” series.

We take the data for the saturated  points since we do not quite know the real
mechanism of “pumping/unpumping” nor the dependence of the signal on the applied
voltage.  Also it is safer to take the saturated point which is less sensitive to minor
differences in the conditions, either of pumping/unpumping or the voltages, from one
measurement to another.

Let’s take DBDS#39 which has been tested at two different thickness.

Table 1. Measured parameters for DBDS #39.

We make two extreme assumptions: one is to assume that the observed signal is
only from electrons and the second is to assume that the electrons and holes have the same
coefficient c e = c h  = c effective  .

Equating formula (11) and (23), respectively, to 0.2 Q0 as measured for the first
point of the thickness of 1530 µm, we obtain

ce = 0.279  and  ceffective = 0.117, respectively.
The dependence of the charge on the thickness is plotted in Fig. 10 using the

above values of ceffective for various thickness conditions.  If we draw the curves for the
above two values of the coefficient ceffective through the first point, the second point is much
closer to the curve for the case in which both electrons and holes are assumed to have the
same coefficient indicating that there is a    significant contribution from hole motion    .

If we take an identical procedure for DBDS#73 the value of the coefficient is
ceffective = 0.24.
DBDS#55 was measured at two points in the thickness and it is consistent with
ceffective = 0.295

2.5 time greater value than that of #39.

    From “Report” 1/97    
D dc  OSU t∞
1105 µm 200 µm T0=425 µm, T=1530 µm DBDS#39*
    From table in J. Conway’s report in Toronto meeting    
675 µm 7840 electrons =>  dc = 217.8 µm
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    Universal template for evaluating the coefficient       c      .

A possible practical mean of evaluating the linear coefficient c of the samples is to
plot the measured charge on a universal template in a normalized scale.  Equation (34)
derived before is a convenient form for such purpose.

2 0f c
T

T

d

T
c,



 =  .      (34)

In Fig. 11 we drew curves of  2 0f c
T

T
,



 as a function of 

T T

T

− 0  and

superimposed plots of 
d

T
c  of the DeBeers samples listed in the “Report on DeBeers

Samples” series from No. 3/96 through 1/98 .
Immediately noticed is the high values of c, which is obvious from the raw number

of the collection distance, of DBDS#86 and #83.  Since #83* (690 µm) was the result of
lapping #83 (782 µm) on growth side, according to the Report, the thickness was treated as
as-grown thickness T.

Though #86 was cracked, according to the Report, when it was lapped to 482 µm
from the original 920 µm, it is an intriguing exercise to trace the curve of the value of c,
~4.8, found at the original thickness down to 400 µm point, (To-T)/T≈0.43. We find dc/T
to be ~0.29 corresponding to 266 µm as the collection distance.  If it were grown to more
than 1 mm, the signal would have been large enough at 400 µm for any purposes.  This
map is an indication that some of the CVD diamond growth recipes in hand might be
already excellent candidates for mass production for real detector.
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    CONCLUSIONS

A) A calculation has been performed for the induced charge signal generated in diamond
    detectors based on linear model in which the local distance of charge transmission was
    assumed to increase linearly with the diamond growth thickness. As a result an explicit
    analytical formula was derived for the dependence of the induced charge on the
    remaining thickness after removing the substrate side.

B) It was shown that the induced charge is independent of the relative orientation of the
     electric field.

C) The measured values of the induced charge on DBDS #39 lapped into different
     thickness is consistent with the general trend of the dependence indicating the validity of
     the linear model although a further study is required for confirmation.

D) The example of DBDS#39 indicates that there is a significant contribution from hole
     motion.

E) A universal template for evaluating the linear coefficient c of the samples was
     demonstrated.  Superimposing the measured data of the collection distances of the
     samples listed in the reports, we find some samples with exceedingly high values of c.

There are some caveats and comments that need to be stated.

a) A large question remains.  Do we have any reason to believe that the linear model is the
    right model which must have to do with the CVD diamond growth process that is totally
    covered under proprietary secrets, at least to the author ? Though there are some
    indications that linear model as phenomenology is close to the reality in some of the
    samples (DBDS#39, #83), it depends on whether a single sample is grown at a constant
    condition represented by a constant value of the coefficient c.

b) It is by no means the intention of the author that the linear coefficient c is the most
    important parameter to watch.  What we need for the detector is a 400 µm thick piece
    with good transmission and if there is a way to make such pieces economically and
    reproducibly, whether it is represented by a single parameter c is of no importance.

c) However, even if we are not able to persuade the manufacturer to provided some hints
    on such questions, it is still an interesting exercise to pursue this model as a “working”
    hypothesis for describing the characteristics of the samples as given, until we find
    otherwise.

d) As has been discussed in the recent meetings, uniformity, or the lack thereof to some
    degree, is an important issue in addition to the “signal size” which is one of the aspects
    averaged over some region of the sample.  It may be a useful practice if the initial
    measurement of the collection distance is made at least at several points over the sample
    surface, especially for the samples larger than ordinary 1 cm x 1 cm area, so that we
    have some feeling on the uniformity.
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