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An explicit analytical formulaor the dependence of the induced charge on the
thickness of diamond detectbasbeen derived based on a simplifieddel,i.e., the so-
called linear model, in which the local mean free path of the electrons and holes is assumed
to increase linearly wittthe depth measuredom the substrate sideThe formula was
found to reproducéhe general trend of the charge measured on the latest sample at two
different thickness reasonablyell. It has been found that the induced charge is
significantly dependent on thhickness otthe diamond anévhich portion inthe depth is
used.Converselythe formulaprovidesthe basis forevaluating thegrowth process. The
induced chargdasbeenfound to beindependent of the relative orientation of the applied
electricfield. It is encouraging to findhat the modepredictsthat the latessamples of
diamond are close in thegrowth parameters to what is neededcteate largeenough
signal for amicrovertex detectowhenthey aregrown properlyand lappeddown to 400
pm which is equivalent to the canoni@Q0 um of silicon microvertex detect@ensors in
terms of radiation length.

INTRODUCTION

For a diamond detector it is important to know the dependence of the induced
charge signal on its thickness and also which part in the depth out of the original as-grown
blank is used. Such information are needed to find out plausible recipe, a combination of
many parameters, for diamond growth. The objective is to maximize the signal for a
diamond detector with limited thickness. If it is for microvertex detector, the canonical
thickness is 40um which is, in terms of radiation length, equivalent to g0of silicon,
the conventional material for microvertex detector,.

In the following, we attempt to derive an analytical formula of the dependence of
the induced charge in a diamond detector on its thickness. We take sdwoadlechodel
which is believed to be a reasonable assumption of how the electron/hole transmission
increases with the thickness of CVD diamond layer.

Throughout the discussion, the following simplification is made:

A) The electrode on both sides of a flat diamond layer are infinitely wide so that the
transmission of the electrons and holes created by the passage of minimum ionizing
particles is regarded to be perpendicular to the electrode planes.

B) The diamond material is assumed to be laterally uniform.

C) Minimum ionizing particles are passing through the diamond layer perpendicularly.

D) The energy deposit per unit path length is constant ignoring particle-by-particle
fluctuation and the fluctuation along the path length.

It is obvious that, under the simplified geometry postulated above, the induced
charge due to charge motion within diamond layer is nothing butithar image charge
moving from one electrode to another via the conductor between the two, as depicted in the
cartoon shown ifrigs. 1 aandb. The chargénduced on the electrodes is the current
flowed through the outside conductor that confe¢histwo electrodes integrated over the

! Theconnectiorcan be via an amplifier and or througound Simply the two electrodes have to be
ultimately connected electrically.



time period of the electron and or hole motion within the diamond. If cliangerels the
complete path inside the diamond layer from one electrode to the other as skayn in
1b, the corresponding induced charg®is
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Fig. 1L ChargeQ is deposited inside the diamond layer close to the bottom

electrode. A mirror imag®" is induced on the bottom electrode. Due to the applied electric
filed, the charg&) drifts towards the top electrode. The mirror im&jesimultaneously

flow through the connection between two electrodes towards the top electrode. When the
charge motion is completed, the induced charge, i.e. the curir@egrated over the period

of the travel, i€)". The direction of the current is as if the cha@yenside the diamond

has flowed out from the top electrode.

For the sake of the completeness of the argument, it is worth noting that in case of
the tracking detector we can consider that the charge is deposited initially without making
any signal. Itis because the charges of the electrons and holes conveniently cancels each
other locally at the initial moment of the ionization by the traversing charged particle. Only
after they start moving apart from each other, the charge is induced on the elctrodes.

Therefore the induced charge is a product of the charge inside the diamond layer
and the distance it traveled divided by the distance between two electrodes. Because of the
assumption made above, the field inside the diamond layer is uniform and therefore the
induced charge is not a function of the depth where the charge is moving.

Since the charge is induced on the electrodes solely due to the charge motion within
the material, whether or not the charge is actti@hysmitted to the electrode does not
affect the induced signal. It is only a matter of long time constant effect if the charge stays
at the surface of the electrode.

Another intriguing aspect of this argument is that the induced charge from either
side of double-sided detector is the same as the charge from a single sided detector. It is
because the charge is the result of the integration of the charge flowing through the
conductor that connect the two electrodes and the “double-siding” is only a matter of
picking-off the same current twice. The cartoon below illustrates such configuration.

1|
Jeidt =—(Qg+ Qp

L, » ADC

Inducedcharge
+

ik -1-|||)~‘

e
I S

)
Inducedcharge

SIS

f{dl =Q2+Q4

|-

Fig. 2. Double-sideddetector configuration.



Based on the above notion, ttieargedQ, , (X', X ). inducedon the electrodes by

themotion byAx of thecharged Q (x’, x). created at deptti and moving ax is
expressed as follows:

Q. (X,x)  =Cadv__ (1)
=20 AX AX 2)
dx

where C = capacitance
T, = thickness of diamond layer.
The charge could move towards the electrode ogrilwth sideor towards the
electrode on thsubstrate sidedepending on the sign of the charge and the direction of the
applied voltage. First we consider the case in which the charge moves towards growth side
electrode, or in other words, along with the growing charge absorption length.
We develop the formulae step by step although it is a matter of trivial integration.
There are three steps of integration:
a) integration over the charge drift length to calculate the charge attenuation from the point
of the charge creation and the point where the charge motion induces the signal charge on
the electrode,
b) integration over the charge drift length to calculate the induced charge corresponding to
the entire drift of the charge form the point of creation to the electrode on the surface,
c) integration over the penetrating minimum ionizing track.

LINEAR MODEL CALCULATION

A) Charge moves towards growth side electrode

It is natural to assume locally an exponential behavior of the charge absorption by
traps.
Then the charge created at degthdQ, (X’ ), is attenuated cascadedly by local
absorption lengthA (x) (x =X’ ).
d Q(x, x)
N

=dQ, (x) Aimit [expD-—Ee pE-L%expE-LD p%-ﬁm
’ /\(X')D 5 Ax+8 T8 A28 T8 A
1 1 1.0, 0

1
=dQ, (X) Elmlt eXpD_EV\(X) X +1%) + A< +21%) +uu--+mEAx E

=dQ, (x') exp{ jxm 3)

Taking ‘linear model, we assume that the local charge absorption lehgth is
linearly dependent on the deptimeasured from the original substrate side surface:

AKX)=Cx (4)

with a constant c .
Then the above integration is executed as follows:

de e
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Define T = Total growth thickness
T,= thickness lapped-off from substrate side.

The charge induced on the electrodes from the charge created at ddpth x’,
Q.4 (X), is the result of integration of the local charge obtained alb@€x’, x ), over
the path lengtlx of the created charge fraxhup to the surface at

d(?ind()c) =
j Qo(x)DxD’dx
= . J’::X'(x)'E dx (7)
CASE a)c # 1.
0 O I
1 ,0 1 R
AQux) = 5o dQU) P p(edx) e
apaNe
0 O
n U 1 O = 1—1_ 1-=[]
T-T (x) ]7;0()0%1_} - = {x} °g
ag
0 O
010 -1 L0
= o7 900 ggpdTH el - xg (8)
ag
where dQ,(x") = Qdx’ (9)
with Q, = charge created per unit path length of minimum ionizing particle.

The total induced chardg, , s then obtained by integrating the above formula over
the path lengtl’ of the traversing minimum ionizing particle.

2 |f the growth side is also lappedT is the depth of the surface of the final sample
measured from the substrate side.
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Thus the induced char@g,, is linearly dependent oh modified by the universal function
f(c,%). f(c,%) is plotted against,/T in Fig. 3.
The curves are bounded by thgper bound forc = « indicated by a straight line

T, 1 T,0
f(C=o,2) == 1--2— 13
(c=w2) =5 -2 (13)
The shape differences among the curves for different valuiessahore apparent in the

form (1+ l)f (c,%) which is conveniently normalized to 0.5-'1%{ =1 as plotted against
c

T, /T in Fig. 4 for various values af . As intuitively expected, the contribution from
deeper part of the layer grows with
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CASEDb) c=1:
1
T-T,

dQu(X) =
1
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p— 1 ) ) —_
“ToT dQ,(x) x* {/nT-¢nx}. (14)

0 Qu= [, 4Qu(x)
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It should be noted that, even though the above formula appears different from
formula (11), the result is continuous around 1.
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Fig. 5°is a plot of the induced charge for= 1 derived from formula (15)
together with the results for = 0.9 and 1.8erived from formula (11) derived for # 1.

B) Charge moves towards substrate side electrode.

In this case, charge is created at deptiand moves backward, i.exs X', with
the same coordinate system as the above in whialsreases from 0 at substrate side
surface and at the growth side surface.

Therefore, the formula for the charge attenuation is now:

d Q(X, x)
] AX

=dQy (x") fimit [expD-—Ee P —2% Bexpi——25 B exprh X
’ /\(X')D 0 AX -0 0 AX —2A%)[] 0 A(X)
1 1 10 O

1
=dQ, (X)) Elmlt expD-EM( ) /\(x' o) + (X —20%) +-°-°--+MEAXB

=dQ,(x") exp{ J’IX:X% } .

Taking the sambnear form of the charge absorption lengtix )

(16)

A(X)=cx
as formula (4), the integral becomes
- J’X dar = -J’X ar (Note: The integration is frotn =x tol =x.)
1=x /\(g) I=x cf
1
- O Xk
= /n Ox0" a7
Therefore
d Q (X, x) —dQO(x)DXD’ L X<X (18)
» (Note: The integration is from=T, tox=x")
Ox [F
= dQ,(x dx
7 Jn 9005

E IT (x)¢ dx (19)

=1

% The unit for the induced charge in the graphs throughout this mtthes electron charge, times the
number ofe-h pairs / mm from a minimum ionizing particle. This unit is identicalcmll&ction

distancé in units of mm. Therefore a factor of 3,600 electrons / 0.1 mm translates this to the number of
electrons.
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The formula is exactly the same as (10) for the case in which the charge
moves towards growth side electrode.

Therefore the polarity of the electrode does not affect the size of the

signal’.

* The effect of the direction of the electron motion on the position resolution with respect to the strips in a
strip detector is out of the scope of this discussion.



C) Total induced charge from electron-hole pairs

Naturally the charge induced from thelesmoving in the direction opposite to the
electron motion igdditive to the charge induced by the electron motion. Based on the
above finding, the added signal is not dependent on the relative polarity of the applied field
and is described by two coefficiemts andc, for electrons and holes, respectively.

Therefore theharge induced by electron-hole paasized by minimum ionizing
particles is a sum of two components as follows:

Qe
0
Q E 1 01 1yt O
= 2 D‘(TZ +T02) __(T2 _Toz) - (T)l_E (To) ¢
T—TOBD_1DJ+1DDZ 3 0
B Bl ce%l CEE
0
1 01 1 10 -
- 1+=
+ (T 1) - (T2 -T3) - (1) () O 5(22)
0 10 N 1002 2c, 0 g
ERENCERN 3
or, using formula (12),
_h pai T, T,
QuE™ = QT fe) + fe) ] (23)
*kkkkkkkkkkhkkhkkkhkkhkkhkkhkkkkkk
where C. = Linear coefficient of the absorption length for electrons
C, = Linear coefficient of the absorption length for holes.

As discussed in the following section, a practical use of the above formula is to
assume the same valuecdbr both of the components. Fig. 6, as an example, curves
forc,=c,=0.1, 0.2, 0.3, and 0.4, for various as-grown thickness are plotted. It is seen
that there is a mild peaking and the induced charge increases if the inefficient substrate side
is lapped off.

An immediate question that follows is what condition is required to produce a large
enough signal fromy400um thick diamond ( As mentioned earlier, 4@ of diamond is
equivalent to a canonical 3@n thick silicon layer | terms of radiation length.) Due to the
smaller dielectric constant of diamond compared to that of silicon, we assume electronics
noise of ~800 electrondn order to achiev8/N=10/1at the most probable peakthe
Landau-like distributionthe induced charge needs to be ~ 8000 electrons at the most
probable peak. ( Although the induced charge we have derived in the discussion so far can
be interpreted as either the average or the most probable peak value, we take it as the former
following the customary definition a@llection distance) The ratio of the average to the
most probable peak of the true Landau distribution of the energy deposit by a minimum
ionizing particle is ~1.2 based on GEANT simulation. Therefore the average signal for
S/N=10/1is ~10,000 electrons. Frdfig. 6, it is seen that such signal can be obtained
from diamond layer grown to 1 mm to 2 mm depending on the value®dme examples
are listed inrable 2

10
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Fig.6. Induced charge for various valueofssuminge = Ch.
Table 2. Examples of parameter setsf@@um thick diamond layer to achieve
<Q,4>=10,000 electrons
C.=C, T . <Qng>
e*Ne-hpairssmm electrons
0.2 1.5 mm 0.254 9,140
2.0 mm 0.285 10,260
0.3 1.5 mm 0.292 10,510
2.0 mm 0.317 11,410
0.4 1.0 mm 0.274 9,860
1.5 mm 0.314 11,300
2.0 mm 0.335 12,060

This is the range of the value ®fwe have already been observing, as discussed later.

In Fig. 6, it should be noted that the end points of the curves correspondijng to
=0 lie on a straight line
Qe (Ty=0) = 2.7 (24)
1+~
c

® A caution needs to be taken for the ratio between average and the most probable peak of the signal. The
ratio depends on the uniformity of the diamond layer and if it is not ideal, the ratio needs to be taken much
larger and hence larger number for the average signal.
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as can be calculated from formula (23) Tgr= 0. This is because the shape factor
f(c,%) becomes 0.5 fof,= 0 as shown in (13).

No data points are supposed to lie below these lines if the growth condition is the
same. Such measurement at the end pointheeas-grown point, is convenient to find the
coefficientc .

D) Practical application

One of the features of diamond is that the mobility of the holes is large, namely 67
% of that of electrons. Therefore we need to take account of the contribution from hole
motion even in the case of short shaping times of amplifier.

As discussed in later sections for the case of real samples, we are definitely
observing the contribution from holes. Toleserved charge &t-T, = 0.4 mm (0.2 mm

)is about the same (~140% ) as the maximum licit ¢o ) for electrons alone It means
that there is a significant contribution from holes.

In principle, a special measurement, in which finely collimated beam of minimum
ionizing particles is injected into the diamond layer parallel to the surface, so that ionization
localized in the direction perpendicular to the layer takes place, can resolve two
components.

Otherwise, two components are indistinguishably additive to each other in the
ordinary measurement of the charge against thickness as can be easily understood from
Figs. 3and4. The dependence of the induced charge on the film thickness is a smooth
function and mildly dependent on the value of the coefficentithin the range we are
observing in the latest samles

From these figures, it is imaginable that the sum of two components with two
different values o€, one large and another small, is similar to the sum of two components
both with middle range value of Figs. 7aandb demonstrate such cases. Fig. 7a
(b), the sum of two components, one with=0.2 (0.4) and another with) =0.1 (0.2) is
compared with the sum of two components with the same value that is the mean of the
former two valuest, = ¢, = 0.15(0.3). A further fine tuning of the effective coefficients
will diminish the differences. Therefore, a practical application of the formula we have
derived is to assume an effective common coefficient for both of the components and
simply multiply the formula (11) for electrons by a factor of 2.

® DBDS#39:c, =¢, =0.12 equivalent .
DBDS#73:c. =c, =0.24 equivalent .
DBDS#55:c, =c, =0.30 equivalent .
DBDS#86:c, =c, =0.48 equivalent .

12
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EXTREME CASES

It is useful to consider extreme cases to know the bound of the reality. We consider
two cases:
A) infinite absorption length,
B) finite constant absorption length throughout the diamond thickness.

A) Infinite absorption length.

A(X) = oo . (25)

The induced charge is the product of the geometrical mean free path and the charge
of the electrons and holes created uniformly over the diamond thickness, divided by the
total thickness. Since the geometrical mean free path is half of the total thickness, the
induced charge is

1 ectron ole
Q ind ﬁ E( -To) (| 5 +| Q h||)(T‘To)-

— —(T T) (|Qelectron|+|QhoIe|) )

Here Q¢*"  andQ)" are the electron charge and hole charge created by the traversing
minimum ionizing particle per unit length in the diamond layer. Since they are equal,

Qind = (T'To )Qo (26)

with  Q, e x Number of electron-hole pairs in diamond per unit length

~3600e / 100pm.

It is obvious that (22) can be also derived by putting into (20).
This is theabsolute limit of the induced charge that can be observed from a
diamond detector. Naturally the thicker the diamond film the greater the observed signal is.

B) Finite constant absorption length.

A (X)=A,: constant. (27)

Replacing thel (x) in equation (3) by the above expression, we obtain

O 1 x O
d Q¥ ) = d Qx) exp]-— [/
O 420
O x-x 0O

=d Q,(X) expd- O (28)

[l o [
To simplify the expression, we tag = 0 without losing generality. Therefore,
equation (7) becomes

4Qu () =1 [1 dQ0)expy

x 0
H
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Fig. 8 is a plot of the induced charge derived from the above formula in a
universal form as a function of/A .
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Fig. 8. Universal curve for the induced charge for constant mean free path
against dimensionless variafdléo..

Intuitively, whenT is much smaller thak, , the charge grows linearly aQ;T
with T because the mean free path is half ads discussed for the caselof= co
(formula (26) ). When T becomes much greater thanit is expected that the mean free
path is approximately, irrespective of where the charge is created. Therefore the induced
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charge asymptotically approaches constant valy@,2while the factor T for the initial
minimum ionizing track length ardT factor for the charge induction cancels out.

Such intuitive picture for the extreme end of the range of the valdes pis

consistent with what can be calculated from formula (31). For small valu&gfthe
first and the second term of the series expansion of the exponential term are canceled and

the remaining third term results@T as intuitively expected. For the large valugd o4,
the result is obvious.

In Fig. 9, formula (31) is plotted again$twith various values of, .
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e-h Pairs / ?( )‘ Q‘ ‘p( ‘)
0.7 } e-h ‘ ‘ ‘ ‘ ‘
/ Qind(X ) = 24 e *Ne-h [1 - A/T){1-exp(-T A)} ]
// Pe —
/ o ®
0.6 / L =-e A=.3mm,T|=co
// <
E /(/?// ) L 4
% 05 // r 3 P/oz\:/o}#)—w-*
2
/ —
! 0.4 / ) /*// A=.2mm,T =
c : / N
o) // )_// )/—Oz\ig mm | 5——C
E / A o i
o, /o ;o/ )/,»/"/°/<
/ // >/<
s /
02 //// A=0.1 mn A=0.1mm, T =|c0
/ X
17
//, //
0.1
-2
V,
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
T mm

Fig.9. Induced charge for constant mean free path.
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APPLICATION TO REAL SAMPLES

As discussed before, a single effective charge absorption coefficient common to
both the electrons and holes, assuming that the contributions are equal, appeared to be
sufficient to reproduce a true behavior for wide range of the relative proportion of the two
components and also the valuecof

The procedure to find the coefficiantis to equate the measured charge to the
formula (11) times 2 for the assumptioncqf=c, =c:

T
2QOT f%’?og = QMeasured . (32)

Note thatQ,......sCaN be expressed as a produdpand customarily usecharge
collection distanced,:

QMeasured: QO ° dc ) (33)
Therefore the above equation becomes :
TO D — dc
Zf%,?m = 2. (34)

In the following we examine two latest samples DBDS #39, #73, and rather old
#55. Data are taken from “Report on DeBeers Samples” series.

We take the data for tteaturated points since we do not quite know the real
mechanism of “pumping/unpumping” nor the dependence of the signal on the applied
voltage. Also it is safer to take the saturated point which is less sensitive to minor
differences in the conditions, either of pumping/unpumping or the voltages, from one
measurement to another.

Let's take DBDS#39 which has been tested at two different thickness.
Table 1. Measured parameters for DBDS #39.

From “Report” 1/97

D d. OSU

1105um 200pm T,=425um, T=1530um DBDS#39*
From table in J. Conway’s report in Toronto meeting

675um 7840 electrons => & 217.8um

We make two extreme assumptions: one is to assume that the observed signal is
only from electrons and the second is to assume that the electrons and holes have the same
coefficientc ., =C, =C ueuive -

Equatlng formula (11) and (23), respectively, to@Q,2s measured for the first
point of the thickness of 1530n, we obtain

¢, =0.279 andc,.= 0.117, respectively.
The dependence of the charge on the thickness is plotiegl. ihO using the
above values o, for various thickness conditions. If we draw the curves for the
above two values of the coefficient,...through the first point, the second point is much
closer to the curve for the case in which both electrons and holes are assumed to have the
same coefficient indicating that there isignificant contribution from hole motion

If we take an identical procedure for DBDS#73 the value of the coefficient is

Ceffecnve_ O 24 . . . L. . .

DBDS#55 was measured at two points in the thickness and it is consistent with
ef'fectlve_ O 295

2.5 time greater value than that of #39.
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Fig. 10. Induced charge observed on DBDS#309.



Universal template for evaluating the coefficientc.

A possible practical mean of evaluating the linear coeffic@fthe samples is to
plot the measured charge on a universal template in a normalized scale. Equation (34)
derived before is a convenient form for such purpose.

T 0 d
%TD T (34)

In Fig. 11we drew curves of2 f %%Eas a function of@ and

superimposed plots G?T£ of the DeBeers samples listed in the “Report on DeBeers

Samples” series from No. 3/96 through 1/98 .

Immediately noticed is the high valuesopfvhich is obvious from the raw number
of the collection distance, of DBDS#86 and #83. Since #83*|(690was the result of
lapping #83 (7821m) on growth side, according to the Report, the thickness was treated as
as-grown thickness.

Though #86 was cracked, according to the Report, when it was lappeditm482
from the original 92Qum, it is an intriguing exercise to trace the curve of the value of c,
~4.8, found at the original thickness down to 40 point, To-T)/T=0.43. We findd /T
to be ~0.29 corresponding to 2@ as the collection distance. If it were grown to more
than 1 mm, the signal would have been large enough gimd0r any purposes. This
map is an indication that some of the CVD diamond growth recipes in hand might be
already excellent candidates for mass production for real detector.
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CONCLUSIONS

A) A calculation has been performed for the induced charge signal generated in diamond
detectors based on linear model in which the local distance of charge transmission was
assumed to increase linearly with the diamond growth thickness. As a result an explicit
analytical formula was derived for the dependence of the induced charge on the
remaining thickness after removing the substrate side.

B) It was shown that the induced charge is independent of the relative orientation of the
electric field.

C) The measured values of the induced charge on DBDS #39 lapped into different
thickness is consistent with the general trend of the dependence indicating the validity of
the linear model although a further study is required for confirmation.

D) The example of DBDS#39 indicates that there is a significant contribution from hole
motion.

E) A universal template for evaluating the linear coeffictenitthe samples was
demonstrated. Superimposing the measured data of the collection distances of the
samples listed in the reports, we find some samples with exceedingly high values of

There are some caveats and comments that need to be stated.

a) A large question remains. Do we have any reason to believe that the linear model is the
right model which must have to do with the CVD diamond growth process that is totally
covered under proprietary secrets, at least to the author ? Though there are some
indications that linear model as phenomenology is close to the reality in some of the
samples (DBDS#39, #83), it depends on whether a single sample is grown at a constant
condition represented by a constant value of the coeffcient

b) It is by no means the intention of the author that the linear coefiideiite most
important parameter to watch. What we need for the detector iquadick piece
with good transmission and if there is a way to make such pieces economically and
reproducibly, whether it is represented by a single paramistef no importance.

c) However, even if we are not able to persuade the manufacturer to provided some hints
on such questions, it is still an interesting exercise to pursue this model as a “working”
hypothesis for describing the characteristics of the samplgisen until we find
otherwise.

d) As has been discussed in the recent meetings, uniformity, or the lack thereof to some
degree, is an important issue in addition to the “signal size” which is one of the aspects
averaged over some region of the sample. It may be a useful practice if the initial
measurement of the collection distance is made at least at several points over the sample
surface, especially for the samples larger than ordinary 1 cm x 1 cm area, so that we
have some feeling on the uniformity.
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