Development of CVD Diamond Tracking Detectors for Experiments at High Luminosity Colliders

RD42 Status Report

Harris Kagan for the RD42 Collaboration LHCC Open Session – Sep 11, 2019

Outline of Talk

- The RD42 Collaboration
- The RD42 Program
- Recent Results
- Collaboration with LHC Experiments: ATLAS BCM', CMS
- The RD42 Request

The 2019 RD42 Collaboration

The 2019 RD42 Collaboration

A. Alexopoulos³, M. Artuso²⁰, F. Bachmair²⁴, L. Bäni²⁴, M. Bartosik³, H. Beck²³, V. Bellini², V. Belyaev¹², B. Bentele¹⁹, A. Bes²⁷, J-M. Brom⁷, M. Bruzzi⁴, G. Chiodini²⁶, D. Chren¹⁸, V. Cindro⁹, G. Claus⁷, J. Collot²⁷, J. Cumalat¹⁹, S. Curtoni²⁷, A. Dabrowski³, R. D'Alessandro⁴, D. Dauvergne²⁷, W. de Boer¹⁰, C. Dorfer²⁴, M. Dunser³, G. Eigen³⁰, V. Eremin⁶, J. Forneris¹⁵, L. Gallin-Martel²⁷, M-L. Gallin-Martel²⁷, K.K. Gan¹³, M. Gastal³, A. Ghimouz²⁷, M. Goffe⁷, J. Goldstein¹⁷, A. Golubev⁸, A. Gorišek⁹, E. Grigoriev⁸, J. Grosse-Knetter²³, A. Grummer²¹, B. Hiti⁹, D. Hits²⁴, M. Hoeferkamp²¹, T. Hofmann³, J. Hosselet⁷, F. Hügging¹, C. Hutton¹⁷, J. Janssen¹, H. Kagan^{13,◊}, K. Kanxheri²⁸, R. Kass¹³, M. Kis⁵, G. Kramberger⁹, S. Kuleshov⁸, A. Lacoste²⁷, S. Lagomarsino⁴, A. Lo Giudice¹⁵, I. Lopez Paz²², E. Lukosi²⁵, C. Maazouzi⁷, I. Mandić⁹, S. Marcatili²⁷, A. Marino¹⁹, C. Mathieu⁷, M. Menichelli²⁸, M. Mikuž⁹, A. Morozzi²⁸, F. Moscatelli²⁸, J. Moss²⁹, R. Mountain²⁰, A. Oh²², P. Olivero¹⁵, D. Passeri²⁸, H. Pernegger³, R. Perrino²⁶, F. Picollo¹⁵, M. Pomorski¹¹, A. Porter²², R. Potenza², A. Quadt²³, F. Rarbi²⁷, A. Re¹⁵, M. Reichmann²⁴, S. Roe³, O. Rossetto²⁷, D.A. Sanz²⁴, M. Scaringella⁴, C. Schmidt⁵, S. Schnetzer¹⁴, S. Sciortino⁴, A. Scorzoni²⁸, S. Seidel²¹, L. Servoli²⁸, S. Smith¹³, B. Sopko¹⁸, V. Sopko¹⁸, S. Spagnolo²⁶, S. Spanier²⁵, K. Stenson¹⁹, R. Stone¹⁴, B. Stugu³⁰, C. Sutera², M. Traeger⁵, W. Trischuk^{16,}, M. Truccato¹⁵, C. Tuve², J. Velthuis¹⁷, S. Wagner¹⁹, R. Wallny²⁴, J.C. Wang²⁰, N. Wermes¹, M. Yamouni²⁷, J. Zalieckas³⁰, M. Zavrtanik⁹

¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy ³ CERN, Geneva, Switzerland ⁴ INFN/University of Florence, Florence, Italy ⁵ GSI, Darmstadt, Germany ⁶ loffe Institute, St. Petersburg, Russia ⁷ IPHC, Strasbourg, France ⁸ ITEP. Moscow, Russia ⁹ Jožef Stefan Institute, Ljubljana, Slovenia ¹⁰ Universität Karlsruhe, Karlsruhe, Germany ¹¹ CEA-LIST Technologies Avancees, Saclay, France ¹² MEPHI Institute, Moscow, Russia ¹³ The Ohio State University, Columbus, OH, USA ¹⁴ Rutgers University, Piscataway, NJ, USA ¹⁵ University of Torino, Torino, Italy ¹⁶ University of Toronto, Toronto, ON, Canada ¹⁷ University of Bristol, Bristol, UK ¹⁸ Czech Technical Univ., Prague, Czech Republic ¹⁹ University of Colorado, Boulder, CO, USA ²⁰ Syracuse University, Syracuse, NY, USA ²¹ University of New Mexico, Albuquerque, NM, USA ²² University of Manchester, Manchester, UK ²³ Universität Goettingen, Goettingen, Germany ²⁴ ETH Zürich, Zürich, Switzerland ²⁵ University of Tennessee, Knoxville, TN, USA ²⁶ INFN-Lecce, Lecce, Italy ²⁷ LPSC-Grenoble, Grenoble, Switzerland ²⁸ INFN-Perugia, Perugia, Italy ²⁹ California State University - Sacramento, USA ³⁰ University of Bergen, Bergen, Norway

114 participants

30 institutes

Areas of work in RD42:

- Materials work (characterization of diamond)
- Work with manufacturers (feedback)
- Development of detectors (pad, strip, pixel, 3D)
- Development of machine devices (BLM, lumi)
- Irradiation (JSI, LANL) and Beam tests (CERN, PSI)
- Work with LHC experiments

RD42 meetings: https://indico.cern.ch/category/3177/

- 9 papers published in 2019; all listed on RD42 website
- 7 conference talks in 2018; all listed on RD42 website
- 2 Ph.D. students graduated in the last year
- 9 Ph.D. students continuing in 2019

The RD42 Program, Publications, and more

CVD Diamond Radiation Detector Development

RD42 Collaboration

Bonn University - CEA (Saclay) - CERN (Geneva) - Czech Technical University - ETH (Zurich) - GSI (Darmstadt) - INFN (Perugia) - IPHC (Strasbourg) - ITEP (Moscow) - Jozef Stefan Institute (Ljubljana) - Karlsruhe Institute of Technology - LPSC (Grenoble) - MEPHI Institute (Moscow) - Ohio State University - Rutgers University - Sacramento State University - Syracuse University -University of Bristol - Universita di Catania - University of Colorado (Boulder) - University of Florence - University of Goettingen - University of Manchester - University of New Mexico (Albuquerque) - Universita del Salento (Lecce) - University of Tennessee - University of Torino - University of Torino

The LHC offers unique physics opportunities in an extremely difficult operating environment. Diamond is a material with such extraordinary physical properties that we wish to explore its use as a particle detector.

public

- RD42 2018 LHCC Status Report and Original RD42 Proposal
- <u>RD42 LHCC Presentations</u> and <u>LHCC Reviews of RD42</u>
- Recent Talks, Recent Publications and Recent Theses
- RD42 Organization Chart
- <u>CERN Directory</u>, <u>Contact RD42</u>

private

- Notes and Drafts
- <u>Pictures</u>
- Projects: <u>Sample Characterization</u>, <u>Tracker Tests</u>, <u>Pixel Detectors</u>, <u>Irradiations</u>
- <u>Companies</u>
- Administration

Specific Sites

- RD42 at CERN
- RD42 at Rutgers University
- RD42, Spin-Offs

I Last modified: Mon Sep 02, 2019 14:54:23 CETDST PageSupport, Diamond.Detector@cern.ch

All updated

Restangular Snip

Characterization in beam tests let us deduce the rate independence of pCVD material up to 8×10^{15} n/cm².

Present ATLAS BCM suffers from abort-lumi incompatibility

- Abort thresholds can not be set higher without abandoning lumi
- Fast timing needed for abort lowers S/N thus limiting lumi stability

Separate functions at the HL-LHC

- Two fast devices from sensor to off-detector
- Keep as much commonality as possible
- 4 stations/side with abort, lumi-BCM', BLM

Requires new sensor geometry and appropriate electronics

Collaboration with experiments: ATLAS BCM'

Stay within pixel part inside Pixel Inner Support Tube

- removable after 2/ab
- Put it close to ideal position z~1900mm
 - space available at r~100mm n~3.6
- Outer part of endcap shorty ring
 - 4 stations/side each with abort, lumi-BCM', BLM

Radiation level at 2/ab luminosity

• 200 Mrad and 2e15n/cm²

Collaboration with experiments: ATLAS BCM'

Preliminary Module Conceptual "design"

Revised Sensor Design Idea

- Build dynamic range into sensor
 - pad sizes from 1mm²-32mm² work well
- Bring bonds to edge. Can be wire bonded or bump bonded

Collaboration with experiments: ATLAS BCM'

Test beam results of first 65nm Preamp

- At CERN and PSI
 - S/N > 40 achieved
 @±1000V
- Discovered a few issues which were resolved

Pulse Height with Pedestal Correction hber of Entri x2/n# 150.67120 3.354 = 0.273 36.78 ± 0.47 70 2742 = 54.4 11.42 ± 0.52 -50 50 100 150 200 250 30 Pulse Height [au] 300 0 Run 579: 312 kHz/cm², 1:01:34 (1600169 evts) Detector: II6-H8-C1-1 (October 2018) Info: -1000V, nonimadiated. Att: None

(b) -1000 V

Diamond Hit Map

RD42 Report

Electronics Design Path

- Start with RD42 fast amp used in rate studies
 - designed in 130nm technology
 - risetime 3-6ns; baseline recovery time 12-18ns
 - noise for 2pf input: 550e
- Design 2 preamps to achieve large dynamic range
 - lumi sensitivity to MIPs at 7ke
 - abort threshold for safety at 25k-7.5M MIPS/cm²
 - electronics dynamic range >100:1
 - risetime 1-2ns; return to baseline (<2%) 12ns
 - noise for 2pf input: 220e; S/N > 40/1; σ_{TOA} < 100ps
- Optimize gain and speed vs SNR for lumi, abort separately
- End with 8 channel amp (4 lumi, 4 abort) in 65nm

2nd 65nm Chip Submitted Aug 28, 2019

Harris Kagan

Collaboration with experiments: ATLAS BCM'

Electronics Design Path

Second version of preamp+CFD layout- submitted Aug 28

RD42 expertise helped the CMS BCM1F Upgrade (shown in last years RD42 LHCC report) to reach a 2% luminosity measurement.

Recently CMS contacted the ATLAS BCM' group about collaborating on the upgrade; interested in a stand-alone CMS luminosity device using diamond and the electronics chain described above.

Produced two 4000 cell pixel prototype w/50µm x 50µm pitch

Three fabricated: Oxford 2, Manchester 1
50µm x 50µm cells ganged for 3x2 (CMS) and 1x5 (ATLAS) readout
Bump bonding: CMS@Princeton (In); ATLAS@IFAE (Sn/Ag)
3x2 ganged tested in Aug 2017@PSI, Sep, Oct 2018@CERN
1x5 ganged tested in Sep, Oct 2018@CERN

Frack Position Y [mm]

Development of 3D Diamond Pixel Modules

00

90

80

70

60

50

40

30

20

10

3

Entries 120764

2

Track Position X [mm]

%

Efficiency |

Preliminary Results (50µm×50µm cells)

- Readout w/PSI46digv2.1-respin CMS chip 6 cells (3x2) readout w/1 channel
- Preliminary efficiency >99.2%

RD42 Preliminary

-2

0

• Collect >85% of charge!

Harris Kagan

Development of 3D Diamond Pixel Modules

Preliminary Results (50µm×50µm cells)

- Readout w/FE-I4 ATLAS pixel chip 5 cells (1x5) readout w/1 channel
- Preliminary efficiency >97.7%
- 5ToT=11,000e; Mean ToT=6.73=14,800e
- Collect >80% of deposited charge!

Harris Kagan

The RD42 Program

7.1: 3D Diamond Sensor Fabrication and Characterisation 2019 Milestones

- Complete testbeam analysis of early 3D prototypes to quantify HV and I operating points and collected charge
- Irradiate 3D device to 10¹⁵
- Laser drilling of 50µm x 50µm 3D cells with 2.5µm diameter columns with >99.9% yield (measured 2.6±0.1µm diameter and 99.7±0.2% yield)
- First 3D columns from etching process produced and evaluated

2020 Milestones

- Testbeam studies of irradiated 3D sensors configured as pads
- Assess performance after fluences of 10¹⁵
- Fabricate 25µm × 25µm 3D cells
- Scale up 3D columns produced by lasers
- Irradiate 50µm x 50µm 3D cells to 10¹⁶

7.2: HL-LHC Beam Monitoring Proof-of-Principle 2019 Milestones

- Produce first 65nm HL-LHC beam loss/lumi ASIC
- Assemble first HL-LHC beam monitor
- Test @PSI up to fluxes of 20MHz/cm²
- Irradiate one station to 10¹⁵

2020 Milestones

- Produce revised 65nm HL-LHC beam loss/lumi ASIC
- Test unirradiated beam monitor station w/new ASIC w/source
- Test irradiated beam monitor station w/new ASIC @CERN
- Test irradiated beam monitor station w/MIPs @ CERN
- Irradiate one station to 10¹⁶

The RD42 Program

7.3: Development of pCVD Material 2019 Milestones

- Work w/manufacturers to understand surface defect production
- Reduce surface defects to less than 1/cm² (reached few/cm²)
- Develop additional characterization tools as needed

2020 Milestones

• Work w/manufacturers to increase ccd to 400µm

2021 Milestones

• Work w/manufacturers to increase uniformity to <2%

7.4: Development of 3D Diamond Pixel Modules 2019 Milestones

- Finish testing 3x2 and 1x5 ganged 50µmx50µm pixel module
- Fabricate and test additional 50µmx50µm pixel modules
- Irradiate 3D pixel modules to 10¹⁵
- Characterize rad tolerance of 3D pixel module with RD53 chip

2020 Milestones

- Fabricate and test 25µmx25µm pixel modules
- Irradiate 3D pixel modules to 10^{16}
- Compare 25µm and 50µm modules in test beam

2021 Milestones

- Irradiate modules to 1017
- Test rad tolerance at 10¹⁷ in beam tests
- Construct pixel based monitoring system

The RD42 Program, 2018 Referees Report

2018 LHCC Referees Report (CERN/LHCC 2018-018)

RD42: Development of Diamond Tracking Detectors for High Luminosity Experiments at the LHC

- Among the goals of the extension period are 3D diamond sensor fabrication and characterisation, proof-of-principle for diamond-based HL-LHC beam monitoring devices, further development of pCVD material and the development of 3D diamond pixel module prototypes.
- The LHCC recommends granting RD42 the 3-year extension requested, including CERN support at the level currently provided (access to CERN facilities, lab and office space, test beams). Progress will be reviewed every year by the LHCC.
- The LHCC encourages RD42 to keep sustaining and developing close links (and eventually projects) and commonalities with the LHC and future collider infrastructures and experiments.
- As it was already mentioned last year, the **LHCC strongly encourages** RD42 to update their web site expeditiously to improve their communication with the scientific community.

RD42 Request of CERN LHCC

The RD42 Role at CERN

- Irradiations, test beams, development of manufacturers, sample procurement
- Central facilities for all experiments

RD42 Request to CERN/LHCC

- Continuation of official recognition by CERN
- Access to CERN facilities
- Access to lab space and office space
- Access to test beams

RD42 and CERN play a critical role in diamond development