Development of CVD Diamond Tracking Detectors for Experiments at High Luminosity Colliders

RD42 Status Report

Harris Kagan for the RD42 Collaboration LHCC Open Session - November 17, 2021

Outline of Talk

- The RD42 Collaboration
- The RD42 2019-2021 Program Milestones and Status
- Highlights of Recent Work
- The RD42 3 Year Proposal
- Summary

The 2021 RD42 Collaboration

The 2021 RD42 Collaboration

M. Artuso²⁰, F. Bachmair²⁴, L. Bäni²⁴, M. Bartosik³, H. Beck²³, V. Bellini², V. Belyaev¹², B. Bentele¹⁹, P. Bergonzo³¹, A. Bes²⁷, J-M. Brom⁷, G. Chiodini²⁶, D. Chren¹⁸, V. Cindro⁹, G. Claus⁷, J. Collot²⁷, J. Cumalat¹⁹, S. Curtoni²⁷, A. Dabrowski³ R. D'Alessandro⁴, D. Dauvergne²⁷, W. de Boer¹⁰, C. Dorfer²⁴, M. Dunser³, G. Eigen³⁰, V. Eremin⁶, J. Forneris¹⁵, L. Gallin-Martel²⁷, M-L. Gallin-Martel²⁷, K.K. Gan¹³, M. Gastal³, A. Ghimouz²⁷, M. Goffe⁷, J. Goldstein¹⁷ A. Golubev⁸, A. Gorišek⁹, E. Grigoriev⁸, J. Grosse-Knetter²³ A. Grummer²¹, B. Hiti⁹, D. Hits²⁴, M. Hoeferkamp²¹. T. Hofmann³, J. Hosselet⁷, F. Hügging¹, C. Hutson¹⁷ R. Jackman³¹, J. Janssen¹, R. Jennings-Moors³¹, H. Kagan^{13,◊}, K. Kanxheri²⁸, M. Kis⁵, G. Kramberger⁹ S. Kuleshov⁸, A. Lacoste²⁷, S. Lagomarsino⁴, A. Lo Giudice¹⁵, I. Lopez Paz²², E. Lukosi²⁵, C. Maazouzi⁷, I. Mandić⁹ S. Marcatili²⁷, A. Marino¹⁹, C. Mathieu⁷, M. Menichelli²⁸, M. Mikuž⁹, A. Morozzi²⁸, F. Moscatelli²⁸, J. Moss²⁹. R. Mountain²⁰, A. Oh²², P. Olivero¹⁵, A. Pakpour-Tabrizi³¹, D. Passeri²⁸, H. Pernegger³, R. Perrino²⁶, F. Picollo¹⁵ M. Pomorski¹¹, A. Porter²², R. Potenza², A. Quadt²³ E. Rarbi²⁷, A. Re¹⁵, M. Reichmann²⁴, S. Roe³, O. Rossetto²⁷, D.A. Sanz Becerra²⁴, C. Schmidt⁵, S. Schnetzer¹⁴ S. Sciortino⁴, A. Scorzoni²⁸, S. Seidel²¹, L. Servoli²⁸ S. Smith¹³, B. Sopko¹⁸, V. Sopko¹⁸, S. Spagnolo²⁶, S. Spanier²⁵, K. Stenson¹⁹, R. Stone¹⁴, B. Stugu³⁰, C. Sutera², M. Traeger⁵, W. Trischuk^{16,♦}, M. Truccato¹⁵, C. Tuve², J. Velthuis¹⁷, S. Wagner¹⁹, R. Wallny²⁴, J.C. Wang²⁰, J. Welch³¹, N. Wermes¹, J. Wickramasinghe²¹, M. Yamouni²⁷, J. Zalieckas³⁰, M. Zavrtanik⁹

116 Participants

Harris Kagan

¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy ³ CERN, Geneva, Switzerland ⁴ INFN/University of Florence, Florence, Italy ⁵ GSI, Darmstadt, Germany ⁶ loffe Institute, St. Petersburg, Russia. 7 IPHC, Strasbourg, France ⁸ ITEP, Moscow, Russia ⁹ Jožef Stefan Institute, Ljubljana, Slovenia ¹⁰ Universität Karlsruhe, Karlsruhe, Germany ¹¹ CEA-LIST Technologies Avancees, Saclay, France ¹² MEPHI Institute, Moscow, Russia ¹³ The Ohio State University, Columbus, OH, USA ¹⁴ Rutgers University, Piscataway, NJ, USA ¹⁵ University of Torino, Torino, Italy ¹⁶ University of Toronto, Toronto, ON, Canada ¹⁷ University of Bristol, Bristol, UK ¹⁸ Czech Technical Univ., Prague, Czech Republic. ¹⁹ University of Colorado, Boulder, CO, USA ²⁰ Syracuse University, Syracuse, NY, USA ²¹ University of New Mexico, Albuquerque, NM, USA ²² University of Manchester, Manchester, UK ²³ Universität Goettingen, Goettingen, Germany 24 ETH Zürich, Zürich, Switzerland ²⁵ University of Tennessee, Knoxville, TN, USA ²⁶ INFN-Lecce, Lecce, Italy ²⁷ LPSC-Grenoble, Grenoble, France ²⁸ INFN-Perugia, Perugia, Italy ²⁹ California State University - Sacramento, USA ³⁰ University of Bergen, Bergen, Norway ³¹ University College London, London, UK

31 Institutes

Areas of work in RD42:

- Materials work (characterization of diamond)
- Work with manufacturers (feedback)
- Development of detectors (pad, strip, pixel, 3D)
- Development of machine devices (BLM, lumi)
- Irradiation (JSI, LANL) and Beam tests (CERN, PSI)
- Work with LHC experiments

RD42 meetings: https://indico.cern.ch/category/3177/

- 11 papers published in 2019, 4 papers published in 2020
- 3 conference talks in 2019, 3 conference talks in 2020
 3 conference talks in 2021, (3 talks cancelled)
- 3 Ph.D. student expect to graduate in 2022

RD=2 R500 Ph.D. students continuing in 2022

- Develop High Rate Beam Monitors
 - Dedicated dual-gain readout ASIC (lumi/abort)
 - Includes ganged 3D sensors for added rad tolerance
- Advancing 3D Sensors
 - Study irradiated sensors
 - Develop 3D diamond pixel modules
 - Develop internal graphitic connections for added redundancy
 - Develop reduced column spacing to further improve rad tolerance
- Radiation tolerance of pCVD and scCVD planar sensors
 - Two complete publications of irradiation studies

- Complete testbeam analysis of early 3D prototypes to quantify operating points, collected charge, efficiency Done
- Irradiation of two early 3D prototype sensors configured as pad detectors to 10¹⁵ – Done
- Laser drilling 50 μ m x 50 μ m cells with 2.6 μ m diameter columns with 99.9% yield Done (Spatial Light Modulators is the key)
- 3D columns from etching process produced and evaluated Done
 <u>2020</u>
- Testbeam studies of irradiated 3D sensors configured as ganged detectors Done
- Assess performance after fluence of 10¹⁵ Done RD42 Report Harris Kagan

- Scale up 3D columns produced by laser– Done
- Irradiation of 50 μm x 50 μm cells to 10¹⁶ In progress

2021

- Final scale up of column production produce 10 cm² sensors Postponed due to shutdown of production lab
- Testbeam studies of sensors irradiated to 10¹⁶ Postponed due to shutdown of resources
- Transfer column production procedures to industry Postponed due to shutdown of resources
- Irradiation to fluences of 10¹⁷ postponed due to shutdown of resources

- 2.2 Milestones: HL-LHC Beam Monitoring Proof-of-Principle <u>2019</u>
 - Produce first RD42 65nm HL-LHC beam loss/lumi ASIC Done
 - Assemble first HL-LHC beam loss monitor station Done
 - Test at PSI with fluxes up to 20 MHz– Done
 - Irradiate one station to a fluence of 10^{15} Done

<u>2020</u>

- Produce second 65 nm HL-LHC beam loss/lumi ASIC Done
- Test un-irradiated beam loss station with CalypsoC ASIC in test beam at CERN Done (results in this talk)
- Test irradiated beam loss station w/MIPs at CERN Postponed waiting for material

- Work w/manufacturers to produce pCVD diamond for HL-LHC systems Done
- Preselect, metalise diamond for the ATLAS BCM' project In progress, waiting for material from manufacturer
- Beam test of BCM' modules using the RD42 65nm CalypsoC ASIC Done (results in this talk)

2.3 Milestones: Development of pCVD Diamond Material

<u>2019</u>

- Develop edge-TCT to measure the internal electric field configuration of CVD material Done
- Work w/manufacturers to reduce surface imperfections and voids to less than 1/cm² Done

<u>2020</u>

 Work w/manufacturers to produce first pCVD material with 400 μm collection distance in finished 500 μm part – In progress, waiting for material

<u>2021</u>

• Work w/manufacturers to reduce the as-grown charge collection distance uniformity across 12 cm wafers to < 2% - In progress

- 2.4 Milestones: Development of 3D pCVD Pixel Module Prototypes 2019
 - Fabricate and characterize a number of 3D diamond pixel devices with the latest advances with 50 μ m x 50 μ m cell size Done
 - Irradiate a small number of 3D diamond pixel devices up to 10¹⁵/cm²– Done
 - Characterize radiation tolerance of 3D pixel devices in beam tests with the RD53 chip Postponed

<u>2020</u>

- Fabricate and characterize a number of 3D diamond pixel devices with the latest advances with 25 μ m x 25 μ m cell size Postponed
- Irradiate a small number of 3D diamond pixel devices up to $10^{16}/\text{cm}^2$ In progress

RD42 Report

Harris Kagan

• Directly compare the 25 μ m cells with the 50 μ m cells in a beam test – Postponed to this proposal

<u>2021</u>

- Confirm radiation hardness of 3D diamond devices in beam tests up to 10¹⁷ hadrons/cm² Postponed to this proposal
- Technology Transfer Postponed to this proposal
- Construct and test pCVD diamond pixel based beam monitoring devices Done

Radiation Tolerance Studies

1-Study 24 GeV p, 800 MeV p, 70 MeV p, 25 MeV p, Fast n, 200 MeV π 2-Determine damage constant for each using 1st-order model 3-Determine Universal Damage Curve scaling parameters 4-Quantify signal response, uniformity vs dose

Radiation Tolerance Studies

1-Study 24GeV p, 800 MeV p, 70 MeV p, 25 MeV p, Fast n, 200 MeV π 2-Determine damage constant for each using 1st-order model 3-Determine Universal Damage Curve scaling parameters 4-Quantify signal response, uniformity vs dose

Collaboration with CERN/LHC Users - ATLAS

1-RD42 created Calypso ASIC for lumi/abort functionality
2-ATLAS BCM' will use Calypso ASIC w/diamond pad, 3D diamond, silicon
3-First beam test results (Aug, Oct, Nov 2021)

BCM' Module: Pulser In, Analog out(4), LVDS+(4), LVDS-(4) → SMA

BCM' 3-pad diamond detector Area ratio 1:2:4.5

Calypso_C:

Collaboration with CERN/LHC Users - ATLAS

1-RD42 created Calypso ASIC for lumi/abort functionality
2-ATLAS BCM' will use Calypso ASIC w/diamond pad, 3D diamond, silicon
3-First beam test results in MALTA Telescope (Aug, Oct, Nov 2021)

BCM' Module: Pad A2

BCM' Module Pad A4.5

Collaboration with CERN/LHC Users - CMS

1-RD42 created Calypso ASIC for lumi/abort functionality
2-CMS BCM' may use Calypso ASIC w/silicon pad detectors
3-First beam test results in MALTA Telescope (Oct 2021)

CMS Module: Pulser In, Analog out(4) LVDS+(4), LVDS-(4) → SMA

CMS Silicon pad detector AC/DC coupled

Calypso_C:

Harris Kagan

Collaboration with CERN/LHC Users - CMS

1-RD42 created Calypso ASIC for lumi/abort functionality 2-CMS BCM' may use Calypso ASIC w/silicon pad detectors 3-First beam test results in MALTA Telescope (Oct 2021)

CMS Si-Pad, -900V w/FD Event 8

CMS Si-Pad, -900V w/FD Event 9

Collaboration with CERN/LHC Users - CMS

1-RD42 created Calypso ASIC for lumi/abort functionality 2-CMS BCM' may use Calypso ASIC w/silicon pad detectors 3-First beam test results in MALTA Telescope (Oct 2021)

CMS Si-Pad, -900V w/FD Event 10

CMS Si-Pad, -900V w/FD Event 11

Collaboration with CERN/LHC Users - CMS

1-RD42 created Calypso ASIC for lumi/abort functionality 2-CMS BCM' may use Calypso ASIC w/silicon pad detectors 3-First beam test results in MALTA Telescope (Oct 2021)

CMS Si-Pad, -900V w/FD PH Distribution for trks in pad

3D Diamond Pixel Detectors

1-RD42 showed 3D devices work first in scCVD then pCVD diamond 2-RD42 fabricated 50µm x50µm pixel detectors read out by ganging with (1x5) ATLAS or (3x2) CMS ASICs 3-In 2019 RD42 characterized the rad tolerance of 3D diamond devices 4-This past year RD42 constructed the first cage/grid structure

ATLAS 3D diamond pixel device (1 x 5 ganging)

3D Diamond Pixel Detectors

1-RD42 showed 3D devices work first in scCVD then pCVD diamond 2-RD42 fabricated 50µm x50µm pixel detectors read out by ganging with (1x5) ATLAS or (3x2) CMS ASICs 3-In 2019 RD42 characterized the rad tolerance of 3D diamond devices 4-This past year RD42 constructed the first cage/grid structure

CMS 3D diamond pixel device (3×2 ganging)

3D Diamond Pixel Detector Results

Preliminary Results (50µm×50µm cells)

- CMS pixel readout (3x2) ganging
- Indium bumps
- LJU telescope (resolution ~3 μm)
- Red box-efficiency 99.2%

Harris Kagan

3D Diamond Pixel Detector Results Preliminary Results (50µm×50µm cells)

- Atlas pixel readout (1x5) ganging
- Tin-Silver bumps
- LJU telescope (resolution ~3 μm)
- Red box-efficiency 98.2%

• Inefficiencies most likely due to processing

Harris Kagan

3D Diamond Pixel Detector Radiation Tolerance Results

Compare signal loss in 3D pixels to published results from planar

- 3D cells collect twice as much charge when unirradiated
- 3D sensors see 5±10% signal reduction at 3.5 x 10¹⁵ p/cm²
- Planar sensors see 45 \pm 5% signal reduction at 3.5 x 10¹⁵ p/cm²

This result together with Universal curve imply 3D diamond devices should be able to operate at 10¹⁷/cm²

3D diamond devices are expected to make extreme radiation tolerant devices - What about redundancy?

the diamond bulk? YES!!!

RD42 Report

Harris Kagan

vias? YES!!!

New 3D Diamond Detector Designs w/grids and vias for extremely radiation tolerant reliable beam devices BCM' Devices Top/Readout side BCM' Devices Bot/HV side

New 3D Diamond Detector Designs w/grids and vias

RD42 Report

(HV)

Possible Extensions of this Work

- Grids/cages together with through-hole-vias allow the possibility of biased structures in the bulk of the diamond
- This is a prerequisite for developing a gain structure based on Impact Ionization

- RD42 proposes a three-year program. The elements are:
- 7.1: 3D Diamond Sensor Fabrication and Characterisation
- 7.2: HL-LHC Beam Monitoring Proof-of-Principle
- 7.3: Development of pCVD Diamond Material
- 7.4: Development of 3D Diamond Pixel Modules

The program begins with the red and yellow milestones from the 2019-2021 program with additional milestones based on what we have recently learned. The details are in the report.

RD42 Summary

Radiation Tolerance

- Understood and published up to 10¹⁶
- Next step is to go to 10¹⁷

Beam Monitors for the HL-LHC

- Calypso readout chip will most likely be used by ATLAS and CMS
- ATLAS BCM' will use diamond planar pads, diamond 3D and silicon
- CMS BCM' will use silicon pads

3D diamond sensors work well

- Unirradiated 3D sensors have twice the charge of planar sensors
- Irradiated sensors have significantly less charge loss than planar

RD42 played a pivotal role in making all this happen!