
Regression testing in the TOTEM DCS

F Lucas Rodríguez1, I Atanassov1, P Burkimsher1, O Frost1, J Taskinen2 and
V Tulimaki2
on behalf of the TOTEM collaboration
1 CERN, CH-1211 Genève 23, Switzerland
2 Savonia Ammattikorkeakoulu, Finland

Abstract.
The Detector Control System of the TOTEM experiment at the LHC is built with the industrial product

WinCC OA (PVSS). The TOTEM system is generated automatically through scripts using as input the
detector Product Breakdown Structure (PBS) structure and its pinout connectivity, archiving and alarmmeta-
information, and some other heuristics based on the naming conventions. When those initial parameters and
automation code are modified to include new features, the resulting PVSS system can also introduce side-
effects.

On a daily basis, a custom developed regression testing tool takes the most recent code from a
Subversion (SVN) repository and builds a new control system from scratch. This system is exported in
plain text format using the PVSS export tool, and compared with a system previously validated by a human.
A report is sent to the developers with any differences highlighted, in readiness for validation and acceptance
as a new stable version.

This regression approach is not dependent on any development framework or methodology. This
process has been satisfactory during several months, proving to be a very valuable tool before deploying
new versions in the production systems.

1. Introduction
The TOTEM (total and elastic measurements) experiment at CERN [2, 3, 4, 6] measures the total cross
section of the proton and also monitors accurately the LHC luminosity [1]. To do this, TOTEM is able to
detect particles very close to the LHC beams, after their collision in the interaction point.

TOTEM consists of three subdetectors. They are the ‘Roman Pot Stations’ (RP), the ‘Cathode Strip
Chambers’ (CSC) Telescope 1 (T1) and the ‘Gas Electron Multipliers’ (GEM) Telescope 2 (T2). The T1
and T2 detectors are located on each side of the CMS interaction point in the very forward region, but
still within the CMS cavern. Two Roman Pot stations are located on either side of the interaction point,
at 220 meters and 147 meters, inside the LHC tunnel. Each Roman Pot station consists of two groups of
three Roman Pots separated by a few meters, as shown in Figure 1.

PVSS is a control system development tool structured around the concept of datapoints. Datapoints
can considered as variables similar to a C language struct stored in a persistent database. Most of the
PVSS scripting capabilities focuses on reading, writing and configuring datapoints.

All the LHC experiments' controls systems use PVSS and the JCOP framework [8] maintained by the
EN-ICE group at CERN.

The TOTEMDetector Control System (DCS) team developed a set of automation scripts and a C# tool
to generate those datapoints in a reliable and unified way [5, 9, 10]. This makes it possible to reconfigure

Figure 1. TOTEM locations

of the whole system within hours (within one working day) and a homogenizes the behaviour among
subsystems.

2. Motivation
This paper presents the outcome of the effort spent to improve the reproducibility and understanding the
final system changes during the project evolution. The purpose of our novel regression tool is to provide
an easy way to evaluate the consistency of the final project with an earlier reference project which is
considered to be working correctly.

Our custom code for the automated generation of datapoints is very reliable, however there is always
need for new features and minor changes to deal with ongoing project maintenance. Those modifications
somehow have undesirable side-effects in other TOTEM detectors or parts of the code. The TOTEM
DCS group was faced with a software Quality Assurance issue.

Existing systems and tools have several limitations and cannot be used directly our our regression tests.
The PVSS tool pvss00ascii.exe can export all datapoints configuration into a plain text proprietary
format. The resulting file has the extension .dpl. Most of the LHC teams for controls use this file as an
exchange of information between the production and developments systems.

However many times these files include too much information. There are many timestamps that
would be better if they were not transferred to the final system. Also many DPs linked to OPC servers
are marked as having an invalid status (as in the development environment it is not possible to replicate
all the hardware components), and there are many other parameters that should not be transferred among
systems. The outcome is clear, using PVSS .dpl as an exchange mechanism is not optimal and can
lead to many problems. Those .dpl files cannot even be directly compared between versions, as all the
timestamps change. Commercial diff tools notice all the changes and a cleaning step would be needed
before comparing files.

TOTEM automation tools are detailed in Figure 2. The sources of information are MS Excel files
(with thousands of rows) and a Visual Paradigm project. A custom preprocessor written in C#, is used
to parse the MS Excel files applying some heuristics to generate the PVSS datapoints names and the
corresponding aliases. Then based on the aliases it generates a tree structure following the Product
Breakdown Structure (PBS) of the detector. However those inputs cannot be easily compared with a
diff tool either. The TOTEM DCS has a centralized definition for all the archiving, alarms, units,…
configuration. A dedicated procedure enforces that all the datapoints match certain filters and conform
to central configuration standards.

Figure 2. Usage of automation tools within the TOTEM DCS

Therefore neither using the .dpl files to deploy the system, nor the existing TOTEM tools, have an
advantage when it comes to compare the final systems.

One requirement for the deployment of our code into the computers managed by other teams, was
to wrap it up into packages following the JCOP guidelines. This, together with the fact of having
three independent detectors, and dividing the code by functions such as High Voltage, Low Voltage,
Environmental Sensors,… results in a sizable number of components based on the common ones that
provide the automation features.

The problem is that small changes in the automation code, or changes in the filters that define the
archiving parameters, units, alarms,… can produce undesired side effects in other areas or other TOTEM
detectors. Even small changes in part of the code might have unexpected effects in the run-time behavior
of the project.

The procedure that the regression tool uses for comparing system is based on building a new PVSS
project from scratch, and installing all the JCOP and TOTEM components. It follows the procedures
described in the internal document for ‘new TOTEM DCS developers’.

Providing a detailed list of the steps, they are:

• Create an empty project.
• Install the JCOP framework installation tool.
• Install the desired JCOP framework components and TOTEM components.
• Export the datapoints using a call to the pvss00ascii.exe executable.
• Clean up the resulting .dpl file in order to get rid of unwanted / nonstructural information.
• Compare the cleaned .dpl file with a clean .dpl reference file that has been peer validated in the
team of developers and by production users.

• Create a user friendly report out of the information gathered and send it to relevant parties.

It is important tomake clear that PVSS is able to import partial.dpl files. By removing the timestamp
columns or some other columns such as the internal DpId the .dpl file is still valid, and can be imported
into a PVSS system.

3. Related work
The JCOP Framework team in the EN-ICE group at CERN have also been investing in Quality Assurance.
They perform regular automated regression testing of the JCOP Framework at the User Interface level
[7]. They plan unit testing for the near future. EN-ICE and TOTEM have adopted Python as the language
for their test suites for its clean interface, extensive library of utilities and cross-platform compatibility.
In this way both groups have been able to profit from a mutual exchange of software. Examples include
a PVSS PMON communication wrapper written in Python (enabling the monitoring and control of all
processes in a PVSS project) and the ‘castration tool’ described in the next section.

Note that in TOTEM, we are not attempting to test the JCOP Framework. Neither are we attempting
to test PVSS nor the Operating System itself. Rather, in TOTEM, we assume the correctness of these
underlying systems. Our primary aim is to maintain and validate the reliability and consistency of
our back-end systems in the face of changes in our initial requirements. For this reason, we have not
undertaken any User Interface testing at this point.

4. Implementation
4.1. Overview of the files
Figure 3 shows all the Python files that form the tool and their dependencies. There are 3 additional
config files in XML format: autoTestCastrateConfig.xml, autoTestConfig.xml and
autoTestPvssLogProcessorConfig.xml.

Figure 3. Python files dependencies

Additional files provide support to schedule the tool for running at night, and execute it with adequate
privileges.

4.2. Formalization of the steps
• Kill any PVSS related process running in the machine.
• Export all the components stored in SVN repositories as defined in the config files.
• Export from SVN the reference .dpl file.
• Configure the Windows firewall for all the PVSS projects.
• Create a PVSS project. We invoke the standard PVSS procedure from an special User
Panel not linked to any particular project. Currently this panel is stored in the component
totInstallation.

• Modify the generated project to include the fwInstallation and totInstallation in the
proj_path variable of its config file.

• Modify the generated project config file to include all the components specified in the config file
(and exported from SVN) into a totInstallation section.

• Start the project.
• Append and additional manager from totInstallation into the project using the PMON TCP
protocol.

• Wait that totInstallation has finished installing all the desired components. The tool
monitors the custom manager status and the global project status using the PMON TCP protocol.
There can be several restarts of the project during this process.

• Stop the project using the PMON TCP protocol.
• Merge PVSS logs and provide a resume of the errors during the execution; save them to the hard
disk.

• Export the datapoints into a .dpl file.
• Commits the .dpl file into SVN.
• Clean up the resulting .dpl file.
• Clean up the reference .dpl file.
• Compare both .dpl files and generate a temporary report in the hard disk.
• Send by email the report and PVSS logs.

4.3. Details on the project config file manipulations
The project config file is updated before the start up of the project. The first step is to introduce new
search paths:

proj_path = "D:/autotesting/export/fwInstallation_6.0.11"
proj_path = "D:/autotesting/export/totInstallation"
proj_path = "D:/autotesting/project/fwComponents"
proj_path = "D:/autotesting/project"

Later in the file we list all the desired components and where to find them. This file also accepts
additional sections identified by[sectionname] followed by several entries of the formkey=value.
A key can be repeated several times, and when it is read by PVSS it will result in an array.

[totem]
DestinationComponents = "D:/autotesting/project/fwComponents"
InstallComponents = "D:/autotesting/export/framework_4.3.0/fwCore.xml"
InstallComponents = "D:/autotesting/export/framework_4.3.0/fwAnalogDigital.xml"
InstallComponents = "D:/autotesting/export/framework_4.3.0/fwCaen.xml"
InstallComponents = "D:/autotesting/export/framework_4.3.0/fwTrending.xml"
...
InstallComponents = "D:/autotesting/export/fwFsm_28.7.1/fwFSM.xml"
InstallComponents = "D:/autotesting/export/fwElmb_4.2.2/fwElmb.xml"
...
InstallComponents = "D:/autotesting/export/totServices/totServices.xml"
InstallComponents = "D:/autotesting/export/totRadmon/totRadmon.xml"
InstallComponents = "D:/autotesting/export/totFsmTypes/totFsmTypes.xml"
InstallComponents = "D:/autotesting/export/totAutomation/totAutomation.xml"
InstallComponents = "D:/autotesting/export/totHelp/totHelp.xml"
...

4.4. totInstallation
The basic JCOP fwInstallation tool (that also fulfils the JCOP component packaging rules) is
not focused on automating the installation of a project without user intervention. To overcome these
limitations, totInstallation takes over the responsibility of deciding when and how to install
components and internally calls fwInstallation. The component totInstallation is merely
a wrapper adding extra functionally.

A key step for the process is a panel able to create a project just executing a command line:
PVSS00ui.exe -n +config config.pa -silentMode -menuBar -iconBar -centered \

-p "D:\...\CreateProject.pnl",$projectName:"project",$installDir:"D:\autotesting"

The invocation of panels allow to pass command line arguments, however the invocation of control
managers do not allow any additional parameter. This kind of invocation with the -n do not need any
previous project in the system, as there is no connection to any PVSS event or data manager.

Additionally totInstallation reads all the entries in the [totem] section of the project
config file. It verifies if the components are installed, and forces their installation one by one, making
sure that the postInstall scripts are properly executed and finished before advancing to the next one.
Although it could be easy to perform restarts of the projects where the component demand it, the scripts
do not perform any restarts for the project. At the present time the only component that really needs a
restart is fwFSM, and the installation of totServices determines the proper conditions and executes
the restart. By avoiding unnecessary (very lengthy) restarts we are able to reduce the overall execution
time.

4.5. Cleanup of .dpl files: The castrator
The castration tool is derived from the work of EN-ICE, but with some additions and better interfacing
to our environment.

The datapoint.dpl files are structured in sections starting with a# and a section name. Following this
line a tab separated table with column names in the first line is the content of the section. The quotation
character is #, also enabling fields to reach over several lines (hence the fields are allowed to contain new
line characters if quoted). However the section called DpType follows a different syntax. They are the
datapoints type definition and it is left unchanged.

Castration of the datapoint list means to preserve only the structural information of these datapoints and
not their value contents. Castration strips columns and rows containing only nonstructural information.
Each distinct section of the datapoint file has to be inspected to determine the right columns to be copied.
Typically uninteresting columns are:

• Timestamps like StampSec, StampMSec and _original.._stime. All occurrences
of this are striped from sections containing them, such as DpValue, PvssRangeCheck,
DpDefaultValue, AlertClass, AlertValu, DistributionInfo, DpFunction,
DpConvRawToIngMain, DpConvIngToRawMain, DpSmoothMain, PeriphAddrMain,
DbArchiveInfo

• Datapoint value like _original.._value (they only occur in the DpValue section).
• Datapoint status like _original.._status64 (they only occur in the DpValue section).
• Datapoint internal identifiers like DpId, which only reflects the order in which the datapoints were
created. Since the installation process is taking place in a distributed manner over several PVSS
managers, small timing differences may already lead to a different numbering. (they only occur in
the Datapoint/DpId section).

First of all the castrate tool separates a single .dpl into the different sections. Then by using the
filters of the tool .xml config files defines what columns are of interest, by explicitly selecting them with
the <columnsToCopy> XML elements. As there is no guarantee of the sorting of the lines within the
section, we introduce the index tag within the section definition. This index is useful for sorting the

lines before the comparison steps, and therefore ignoring differences related to different ordering. Also
the <index> relates with the <filterIgnore> elements, when those of those filters is ignored, the
full line is ignored. There are some computer specific datapoints generated by PVSS.

An example of this castration definition from autoTestCastrateConfig.xml is given:
<castrateConfig>

<section index="ElementName" name="DpValue">
<filterIgnore>
<match regexp="^_Stat_event_\d_to_ctrl_\d\..*"/>
<match regexp="^_Stat_event_\d_to_event_\d\..*"/>
<match regexp="^_Stat_event_\d_to_dist_\d\..*"/>
<match regexp="^_Stat_event_\d\..*"/>
<match regexp="^_DistManager\..*"/>
<match regexp="^_DistConnections\..*"/>
<match regexp="^_ArchiveDisk\..*"/>
<match regexp="^_ValueArchive_\d\..*"/>
<match regexp="^_Event.License\..*"/>
<match regexp="^_mp_COUNTER1\..*"/>
<match regexp="^_unDistributedControl_dist_\d\..*"/>

</filterIgnore>
<columnsToCopy>

<!--Note : the index 'ElementName' is copied as well-->
<column name="TypeName"/>
<!--<column name="_original.._value"/>-->
<!--<column name="_original.._status64"/>-->
<!--<column name="_original.._stime"/>-->

</columnsToCopy>
</section>

</castrateConfig>

4.6. PVSS logs filtering
The TOTEM regression testing tool permits filtering out the error messages that may be safely ignored.

Only the SEVERE, FATAL and WARNING error messages that not explicitly suppressed are included
in the HTML body of the final report.

An example of log message filtering from autoTestPvssLogProcessorConfig.xml is:

<pvssLogFilterIgnore>
<match regexp="^Blocking Manager .* detected\. No heartbeat since 30 seconds\."/>
<match regexp="^Manager .* is no longer blocking\."/>
<match regexp="^Unexpected state, RemoveItem The value of the handle is invalid"/>
<match regexp="^Unexpected state, RemoveItem The operation completed successfully\."/>
<match regexp="^Unexpected state, statFunc work: , .*, Omitted .* periods in calculation"/>
<match regexp="^Values were discarded, .*, .*, function has 200 pending runs -> DISCARDING!"/>
<match regexp="^Not processing writes now"/>
...
</pvssLogFilterIgnore>

5. Reporting
At the end of each daily execution, the tool sends an email using amailing list to the TOTEMcollaborators
that want to follow closely the changes. Typically it is the development team who subscribe to the
notifications.

Changes between the .dpl files are compared using the Python difflib libraries and included in
the report. On the left side it shows the validated file, and on the right side any modifications. Python
difflib uses a color encoding to clarify if they are additions, removals, or changes. An example is
give in Figure 4.

At the end of the report there is a list with the components used, the filtered error messages, and
information about the running time andOS platform used for the test. The full PVSS log of the installation
process is emailed as a compressed attachment.

Figure 4. Example of file differences as reported by email

6. Possible improvements
Keeping in mind that the approach is to test all our development and data points generation steps as a
black box, there are still many possible improvements in this project.

Some of them are:

• Do a comparison not only of .dpl files, but also of the directory structure. Some files are created
dynamically during project execution, other files are copied according to the platform, and it is
easy to forget to remove or include new files in the components definition for the JCOP installation
process.

• Partial extraction of .dpl files and their comparison could help in unit testing.
• Extend the regression testing to cover User Interface aspects.
• Provide better feedback about the time used for every component installation. Some of them take
minutes, while others can take more than one hour. Sometimes changes can dramatically affect
the installation time, without compromising the execution time of controlling and monitoring the
hardware.

• The Python comparison library uses too much memory (>2 GB). A less memory demanding library
would be ideal. It could be a custom tool based on the .dpl structure.

• Monitor CPU usage.
• Mailing lists do not accept mails greater than 10MB. Frequently major changes and reconfigurations
produce a diff report bigger than this.

• Improve the JCOP fwInstallation tool to have a local back-end of desired PVSS
components for the project, and merge it with totInstallation. Although implemented, this
synchronization mechanism for installing components needs a remote database.

7. Conclusions
The TOTEM regression testing tool can be used not only for rapidly verifying small improvements but
can also help in assessing changes between major releases.

TOTEM operates with brief data taking periods. This allows the DCS team much flexibility for
deploying updates. We are able to focus mainly on small and incremental changes ensuring reliability.
Right now we can send an update, and if it fails, we have enough time before the next run to fix any
issue. In a longer term, in a continuous running scenario we could easily adapt by extracting .dpl
files from the production systems and verifying using a system generated in a development environment.
Regression testing and comparison applies not only across different releases but also among environments
(production and development).

The tool itself does not provide full code coverage testing and has many limitations. However if after
introducing changes, the .dpl file evolves as expected and there are no additional error messages the
developers are extremely confident that an upgrade will not produce any side effects, (or at least it will
not be any worse that it was before!).

Still the process takes too long, about 5 hours. It would be ideal if it were less than 1 hour opening
the doors to a much more agile development life-cycle, and using it as a kind of compiler to confirm the
changes several times per day.

Finally if a JCOP component alone is changed without changing our TOTEM components, we
can even identify bugs in the JCOP framework. We are able to explore the compatibility with newer
component versions before the production systems are upgraded. In this way we have discovered several
bugs in the JCOP framework and reported them. Our test procedure is a huge use case where we not
only test our code, but indirectly all the JCOP and PVSS layers. We could also validate different PVSS
versions and PVSS patches using the same procedure.

References
[1] Albrow M et al. 2006 Prospects for Diffractive and Forward Physics at the LHC CERN/LHCC

2006-039/G-124.
[2] Anelli G et al. 2008 The TOTEM experiment at the CERN Large Hadron Collider Journal of

Instrumentation 3.
[3] Antchev G et al. 2011 First measurement of the total proton-proton cross-section at the lhc energy

of sqrt(s) = 7 tev A letters journal exploring the frontiers of physics 96.
[4] Antchev G et al. 2011 Proton-proton elastic scattering at the lhc energy of sqrt(s) = 7 tev A letters

journal exploring the frontiers of physics 95.
[5] Atanassov I, Lucas Rodríguez F, Palazzi P, Ravotti F, Stöckell S, Sziklai J, and Tulimaki V 2010

Automation tools in the software development of the totem detector control system 2010 IEEE
Nuclear Science Symposium Conference Record (On behalf of the TOTEM Collaboration).

[6] Berardi V et al. 2004 TOTEM: Technical Design Report CERN-LHCC-2004-002.
[7] Burkimsher PC, González Berges M, and Klikovits S 2011 Multi-platform scada gui regression

testing at cern Proceedings of ICALEPCS Grenoble, France.
[8] JCOP Framework Team 2007 Joint COntrols Project (JCOP) framework subproject: guidelines

and conventions CERN-JCOP-2000-008.
[9] Lucas Rodríguez F 2010 Estimation of the response time and data flows in the totem detector

control system Proceedings of the Eighth International Workshop on Personal Computers and
Particle Accelerators.

[10] Lucas Rodríguez F, Atanassov I, Palazzi P, and Ravotti F 2009 The totem detector control system
Proceedings of the 12th International Conference On Accelerator And Large Experimental Physics
Control Systems (On behalf of the TOTEM Collaboration).

