

Pileup Probabilities and Events per Bunch-Crossing

M. Deile

April 15, 2008

Abstract

This note collects some formulae and numbers for dealing with pileup at the LHC.

1 Introduction

The total number of events per bunch-crossing follows a Poisson distribution

$$P(N_t) = \frac{\nu_t^{N_t}}{N_t!} e^{-\nu_t}$$
(1)

with mean

$$\nu_t = \langle N_t \rangle = \sigma_t \, \mathcal{L} \left\langle \Delta t_{bunch} \right\rangle, \tag{2}$$

where the mean bunch distance is given by

$$\left\langle \Delta t_{bunch} \right\rangle = \frac{1}{f_{LHC} k} \,. \tag{3}$$

The LHC revolution frequency is $f_{LHC} = 11.245 \text{ kHz}$. For the total cross-section we assume $\sigma_t = 110 \text{ mb}$. The luminosity \mathcal{L} and the number of bunches k depend on the running conditions. We consider two cases:

1. A typical $\beta^* = 0.5 \text{ m}$ scenario: $\mathcal{L} = 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ and $\mathbf{k} = 2808$ $(\mathcal{L}/\mathbf{k} = 3.6 \times 10^{29} \text{ cm}^{-2} \text{s}^{-1})$: In this case, $\langle \Delta t_{bunch} \rangle = 31.67 \text{ ns}$ (not the minimum bunch distance of 25 ns!). This yields $\nu_t = 3.5$ events per bunch crossing.

Some distribution values for $P(N_t)$ are given in Table 1. We conclude that the probability of observing at least 1 event is 1-0.03 = 97%, and the pileup probability $P(N_t \ge 2) = 86.4\%$.

n	0	1	2	3	4	5
$P(N_t = n)$						
$P(N_t > n)$	0.970	0.864	0.679	0.463	0.274	0.142

Table 1: Poisson distribution for the total number of events per bunch-crossing for $\mathcal{L}/k = 3.6 \times 10^{29} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ ($\nu_t = 3.5$).

2. The typical $\beta^* = 90 \,\mathrm{m}$ scenario: $\mathcal{L} = 3 \times 10^{30} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ and $\mathbf{k} = 156 \,(\mathcal{L}/\mathbf{k} = 1.9 \times 10^{28} \,\mathrm{cm}^{-2} \mathrm{s}^{-1})$:

Here, the mean bunch distance is $\langle \Delta t_{bunch} \rangle = 570 \text{ ns}$, and per bunch crossing a mean number of $\nu_t = 0.188$ events is observed. Table 2 gives some values for $P(N_t)$. In this scenario, the probability of observing at least 1 event is 17%, and the pileup probability $P(N_t \ge 2) = 1.5\%$.

n	0	1	2	3
$P(N_t = n)$	0.8285	0.1558	0.0147	0.0009
$P(N_t > n)$	0.1715	0.0157	0.0010	0.0001

Table 2: Poisson distribution for the total number of events per bunch-crossing for $\mathcal{L}/k = 1.9 \times 10^{28} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ ($\nu_t = 0.188$).

2 Pileup Probability for Specific Event Classes

Question: What is the probability of observing in 1 bunch-crossing a total number of N_t events out of which N_A belong to class A, N_B to class B etc.? We decompose the total cross-section as

$$\sigma_t = \sigma_A + \sigma_B + \dots + \sigma_R \tag{4}$$

or, in terms of the number of events,

$$N_t = N_A + N_B + \dots + N_R \tag{5}$$

where the event class R stands for the unspecified rest. In this note, we consider the two simplest cases with 1 and 2 specified event classes.

2.1 One Specified Event Class

The simplified question is: What is the probability of observing in 1 bunch-crossing a total number of N_t events out of which N_A are of type A, for example elastic scattering events? The event number decomposition now reads:

$$N_t = N_A + N_R \tag{6}$$

The quantity requested is the two-dimensional probability $P(N_A, N_t)$. From the independence of the classes A and R follows directly:

$$P(N_A, N_t) = \frac{\nu_A^{N_A}}{N_A!} e^{-\nu_A} \frac{(\nu_t - \nu_A)^{N_t - N_A}}{(N_t - N_A)!} e^{-(\nu_t - \nu_A)}$$
(7)

A different approach – which formally confirms the independence of A and R – is to express $P(N_A, N_t)$ as

$$P(N_A, N_t) = P(N_A|N_t) P(N_t)$$
(8)

where $P(N_t)$ is given by (1), and the conditional probability $P(N_A|N_t)$ follows the binomial distribution

$$P(N_A|N_t) = \begin{pmatrix} N_t \\ N_A \end{pmatrix} \left(\frac{\nu_A}{\nu_t}\right)^{N_A} \left[1 - \frac{\nu_A}{\nu_t}\right]^{N_t - N_A}$$
(9)

Note that here the prerequisites for a Poisson approximation are not fulfilled: N_t is not very big, and ν_A/ν_t is not necessarily very small (e.g. it isn't if A stands for elastic scattering).

Combining (1) and (9) in (8) we obtain

$$P(N_A, N_t) = \begin{pmatrix} N_t \\ N_A \end{pmatrix} \left(\frac{\nu_A}{\nu_t}\right)^{N_A} \left[1 - \frac{\nu_A}{\nu_t}\right]^{N_t - N_A} \frac{\nu_t^{N_t}}{N_t!} e^{-\nu_t}$$
(10)

which is equivalent to (7).

As examples, Tables 3 and 4 show $P(N_A, N_t)$ for the typical 0.5 m and 90 m running scenarios, in the case where A stands for elastic scattering.

N_A	0	1	2	3	4	5	$P(N_A)$
0	0.030	0.077	0.098	0.083	0.053	0.027	0.387
1	0	0.029	0.073	0.093	0.080	0.051	0.368
2	0	0	0.014	0.035	0.045	0.038	0.175
3	0	0	0	0.0044	0.011	0.014	0.055
4	0	0	0	0	0.001	0.003	0.013

Table 3: $P(N_A, N_t)$ for A = elastic assuming $\sigma_{elastic} = 30$ mb, for $\mathcal{L}/k = 3.6 \times 10^{29} \text{ cm}^{-2} \text{s}^{-1}$ ($\nu_t = 3.5, \nu_A = 0.95, \nu_A/\nu_t = 0.273, 1 - \nu_A/\nu_t = 0.727$).

N_A	0	1	2	3	$P(N_A)$
0	0.8285	0.1133	0.0077	0.00035	0.9499
1	0	0.0426	0.0058	0.00040	0.0488
2	0	0	0.0011	0.00015	0.0013
3	0	0	0	$1.8 imes 10^{-5}$	$2.1 imes 10^{-5}$

Table 4: $P(N_A, N_t)$ for A = elastic assuming $\sigma_{elastic} = 30 \text{ mb}$, for $\mathcal{L}/k = 1.9 \times 10^{28} \text{ cm}^{-2} \text{s}^{-1}$ ($\nu_t = 0.188, \nu_A = 0.051, \nu_A/\nu_t = 0.273, 1 - \nu_A/\nu_t = 0.727$).

Special limit:

Which is the probability of observing N_t events out of which 1 is of a **very rare** type A, i.e. $N_A = 1$ and $\nu_A/\nu_t \to 0$?

Eqn. (9) now reduces to

$$P(N_A = 1|N_t) = N_t \frac{\nu_A}{\nu_t} \left[1 - \frac{\nu_A}{\nu_t} \right]^{N_t - 1} \to N_t \frac{\nu_A}{\nu_t}, \qquad (11)$$

and our result is

$$P(N_A = 1, N_t) \to N_t \frac{\nu_A}{\nu_t} \frac{\nu_t^{N_t}}{N_t!} e^{-\nu_t} = \nu_A \frac{\nu_t^{N_t - 1}}{(N_t - 1)!} e^{-\nu_t}$$
(12)

2.2 Two Specified Event Classes

What is the probability of observing in 1 bunch-crossing a total number of N_t events out of which N_A belong to class A and N_B to class B?

Analogously to the previous section, $P(N_A, N_B, N_t)$ can be written either as

$$P(N_A, N_B, N_t) = \frac{\nu_A^{N_A}}{N_A!} e^{-\nu_A} \frac{\nu_B^{N_B}}{N_B!} e^{-\nu_B} \frac{(\nu_t - \nu_A - \nu_B)^{N_t - N_A - N_B}}{(N_t - N_A - N_B)!} e^{-(\nu_t - \nu_A - \nu_B)}$$
(13)

or as

$$P(N_A, N_B, N_t) = \binom{N_A + N_B}{N_A} \left(\frac{\nu_A}{\nu_A + \nu_B} \right)^{N_A} \left[1 - \frac{\nu_A}{\nu_A + \nu_B} \right]^{N_B} \\ \times \left(\frac{N_t}{N_A + N_B} \right) \left(\frac{\nu_A + \nu_B}{\nu_t} \right)^{N_A + N_B} \left[1 - \frac{\nu_A + \nu_B}{\nu_t} \right]^{N_t - N_A - N_B} \\ \times \frac{\nu_t^{N_t}}{N_t!} e^{-\nu_t}$$
(14)

Tables 5 and 6 show the case of A = elastic and B = NSD for the two scenarios considered.

				N_t		
N_A, N_B	0	1	2	3	4	5
0, 0	0.030	0.010	0.002	0.0002	2×10^{-5}	8×10^{-7}
0, 1	0	0.067	0.022	0.004	0.0004	4×10^{-5}
1, 0	0	0.029	0.010	0.002	0.0002	2×10^{-5}
0, 2	0	0	0.075	0.025	0.004	0.0004
1, 1	0	0	0.064	0.021	0.003	0.0004
2, 0	0	0	0.014	0.005	0.0007	8×10^{-5}
0, 3	0	0	0	0.055	0.018	0.003
1, 2	0	0	0	0.071	0.023	0.004
2, 1	0	0	0	0.030	0.010	0.002
3, 0	0	0	0	0.004	0.001	0.0002
0, 4	0	0	0	0	0.031	0.010
1, 3	0	0	0	0	0.053	0.017
2, 2	0	0	0	0	0.034	0.011
3, 1	0	0	0	0	0.010	0.003
4, 0	0	0	0	0	0.001	0.0003

Table 5: $P(N_A, N_B, N_t)$ for A = elastic, B = NSD, (i.e. R = SD) assuming $\sigma_{elastic} = 30$ mb and $\sigma_{NSD} = 70$ mb, for $\mathcal{L}/k = 3.6 \times 10^{29} \text{ cm}^{-2} \text{s}^{-1}$ ($\nu_t = 3.5$, $\nu_{elastic} = 0.95$, $\nu_{NSD} = 2.22$, $\nu_{SD} = 0.33$).

	N_t						
N_A, N_B	0	1	2	3			
0, 0	0.8285	0.0140	0.00012	7×10^{-7}			
0, 1	0	0.0993	0.0017	0.00001			
1, 0	0	0.0425	0.00072	6×10^{-6}			
0, 2	0	0	0.0059	0.00010			
1, 1	0	0	0.0051	0.00009			
2, 0	0	0	0.0011	0.00002			
0, 3	0	0	0	0.00024			
1, 2	0	0	0	0.00031			
2, 1	0	0	0	0.00013			
3, 0	0	0	0	0.00002			

Table 6: $P(N_A, N_B, N_t)$ for A = elastic, B = NSD, (i.e. R = SD) assuming $\sigma_{elastic} = 30 \text{ mb}$ and $\sigma_{NSD} = 70 \text{ mb}$, for $\mathcal{L}/k = 1.9 \times 10^{28} \text{ cm}^{-2} \text{s}^{-1}$ ($\nu_t = 0.188$, $\nu_{elastic} = 0.051$, $\nu_{NSD} = 0.120$, $\nu_{SD} = 0.017$).

3 Number of Events per Bunch-Crossing under the Condition of Having a Trigger

Suppose we trigger on events of class A (which may even represent a minimum bias trigger as a special case). In one bunch crossing there can be at most one trigger, even if several events of type A have occurred. Hence, the trigger condition can be written as $N_A \ge 1$. Which is the probability distribution and which is the mean of the total number of events in a bunch crossing under the condition that a trigger has been given?

3.1 Probability Distribution

The conditional probability distribution we are aiming at is formally expressed as

$$P(N_t | N_A \ge 1) = \frac{P(N_t, N_A \ge 1)}{P(N_A \ge 1)}$$
(15)

Since $P(N_A)$ follows a Poisson distribution, the denominator becomes

$$P(N_A \ge 1) = 1 - e^{-\nu_A} \tag{16}$$

where as the enumerator is resolved using (8) and (9):

$$P(N_t, N_A \ge 1) = P(N_t) \sum_{N_A=1}^{N_t} {\binom{N_t}{N_A}} \left(\frac{\nu_A}{\nu_t}\right)^{N_A} \left[1 - \frac{\nu_A}{\nu_t}\right]^{N_t - N_A}$$
$$= P(N_t) \left[\sum_{N_A=0}^{N_t} {\binom{N_t}{N_A}} \left(\frac{\nu_A}{\nu_t}\right)^{N_A} \left(1 - \frac{\nu_A}{\nu_t}\right)^{N_t - N_A} - \left(1 - \frac{\nu_A}{\nu_t}\right)^{N_t}\right]$$
$$= P(N_t) \left[1 - \left(1 - \frac{\nu_A}{\nu_t}\right)^{N_t}\right]$$
(17)

Finally

$$P(N_t|N_A \ge 1) = P(N_t) \frac{1 - \left(1 - \frac{\nu_A}{\nu_t}\right)^{N_t}}{1 - e^{-\nu_A}}$$
$$= \frac{\nu_t^{N_t}}{N_t!} e^{-\nu_t} \frac{1 - \left(1 - \frac{\nu_A}{\nu_t}\right)^{N_t}}{1 - e^{-\nu_A}}$$
(18)

Let us now consider two special cases:

• Minimum Bias Trigger: In this case, $\nu_A = \nu_t$. Hence

$$P(N_t|N_t \ge 1) = \frac{\nu_t^{N_t}}{N_t!} \frac{\mathrm{e}^{-\nu_t}}{1 - \mathrm{e}^{-\nu_t}}$$
(19)

• Triggering on a very rare event class: In this limit, $\nu_A \ll 1$.

$$P(N_t|N_A \ge 1) \rightarrow \frac{\nu_t^{N_t}}{N_t!} e^{-\nu_t} \frac{1 - \left(1 - N_t \frac{\nu_A}{\nu_t}\right)}{1 - 1 + \nu_A}$$
$$= \frac{\nu_t^{N_t - 1}}{(N_t - 1)!} e^{-\nu_t}$$
$$= P(N_t - 1)$$
(20)

3.2 Mean Number of Events

The mean number of events in a bunch crossing where a trigger has been observed is given by

$$\langle N_t \rangle_{N_A \ge 1} = \sum_{N_t=0}^{\infty} N_t P(N_t | N_A \ge 1)$$
(21)

Using (18) for the general case gives

$$\langle N_t \rangle_{N_A \ge 1} = \frac{\sum_{N_t=0}^{\infty} N_t \frac{\nu_t^{N_t}}{N_t!} e^{-\nu_t} \left[1 - \left(1 - \frac{\nu_A}{\nu_t} \right)^{N_t} \right] }{1 - e^{-\nu_A}}$$

$$= \nu_t \frac{\sum_{N_t=1}^{\infty} \frac{\nu_t^{N_t-1}}{(N_t-1)!} e^{-\nu_t} \left[1 - \left(1 - \frac{\nu_A}{\nu_t} \right)^{N_t-1} \left(1 - \frac{\nu_A}{\nu_t} \right) \right] }{1 - e^{-\nu_A}}$$

$$= \nu_t \frac{\sum_{N_t=0}^{\infty} \frac{\nu_t^{N_t}}{N_t!} e^{-\nu_t} - \left(1 - \frac{\nu_A}{\nu_t} \right) \sum_{N_t=0}^{\infty} \frac{\nu_t^{N_t}}{N_t!} e^{-\nu_t} \left(1 - \frac{\nu_A}{\nu_t} \right)^{N_t} }{1 - e^{-\nu_A}}$$

$$= \nu_t \frac{1 - \left(1 - \frac{\nu_A}{\nu_t} \right) e^{-\nu_A} \sum_{N_t=0}^{\infty} \frac{\left[\nu_t \left(1 - \frac{\nu_A}{\nu_t} \right) \right]^{N_t}}{N_t!} e^{-\nu_t \left(1 - \frac{\nu_A}{\nu_t} \right)} }{1 - e^{-\nu_A}}$$

$$= \nu_t \frac{1 - \left(1 - \frac{\nu_A}{\nu_t} \right) e^{-\nu_A} }{1 - e^{-\nu_A}}$$

$$= \nu_t \left[1 + \frac{\nu_A}{\nu_t} \frac{e^{-\nu_A}}{1 - e^{-\nu_A}} \right]$$

$$(22)$$

Again, we shall illustrate this formula with the same special cases as in the previous section.

• Minimum Bias Trigger:

In this case, $\nu_A = \nu_t$. Hence

$$\langle N_t \rangle_{N_t \ge 1} = \nu_t \left[1 + \frac{\mathrm{e}^{-\nu_t}}{1 - \mathrm{e}^{-\nu_t}} \right]$$
 (23)

For $\nu_t = 3.5$, we obtain

$$\langle N_t \rangle_{N_t \ge 1} = 3.5 \left(1 + \frac{0.030}{0.970} \right) = 3.6$$

and for $\nu_t = 0.188$:

$$\langle N_t \rangle_{N_t \ge 1} = 0.188 \left(1 + \frac{0.829}{0.171} \right) = 1.097$$

• Triggering on a very rare event class: In this limit, $\nu_A \ll 1$.

$$\langle N_t \rangle_{N_A \ge 1} \quad \to \quad \nu_t \left[1 + \frac{\nu_A}{\nu_t} \frac{1 - \nu_A}{1 - 1 + \nu_A} \right]$$

$$= \quad \nu_t + 1 - \nu_A$$

$$(24)$$

$$\rightarrow \nu_t + 1$$
 (25)

Note that this formula – "very well known to everybody for at least 30 years" [1] – applies only to this special limit and not to the general case.

Figure 1 shows $\langle N_t \rangle_{N_A \ge 1}$ as a function of ν_A for $\nu_t = 3.5$ in the general case (22) and in the approximation for small ν_A (24). Note that in the cases of elastic scattering ($\nu_A = 0.95$) and single diffraction ($\nu_A = 0.33$) the general formula must be used whereas for Double Pomeron exchange ($\nu_A = 0.03$ assuming $\sigma_{DPE} = 1$ mb) both approximations (24) and (25) are within ± 0.33 % from the true value.

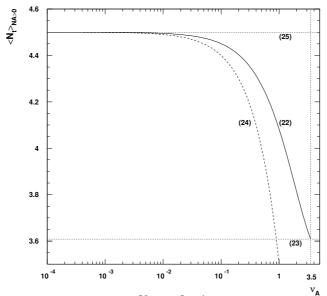


Figure 1: $\langle N_t \rangle_{N_A \ge 1}$ for $\mathcal{L}/k = 3.6 \times 10^{29} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ ($\nu_t = 3.5$) as a function of ν_A for the general case (22) and in the approximation for small ν_A (24).

Figure 2 shows the same for $\nu_t = 0.188$.

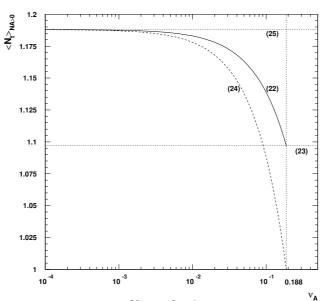


Figure 2: $\langle N_t \rangle_{N_A \ge 1}$ for $\mathcal{L}/k = 1.9 \times 10^{28} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ ($\nu_t = 0.188$) as a function of ν_A for the general case (22) and in the approximation for small ν_A (24).

References

[1] Anonymous: private communication.