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Abstract

This note collects some formulae and numbers for dealing with pileup at the LHC.

1 Introduction

The total number of events per bunch-crossing follows a Poisson distribution

P (Nt) =
νNt

t

Nt!
e−νt (1)

with mean

νt = 〈Nt〉 = σt L 〈∆tbunch〉 , (2)

where the mean bunch distance is given by

〈∆tbunch〉 =
1

fLHC k
. (3)

The LHC revolution frequency is fLHC = 11.245 kHz. For the total cross-section we
assume σt = 110mb. The luminosity L and the number of bunches k depend on the
running conditions. We consider two cases:

1. A typical β∗ = 0.5m scenario: L = 1033 cm−2s−1 and k = 2808
(L/k = 3.6 × 1029 cm−2s−1):
In this case, 〈∆tbunch〉 = 31.67 ns (not the minimum bunch distance of 25 ns!). This
yields νt = 3.5 events per bunch crossing.

Some distribution values for P (Nt) are given in Table 1. We conclude that the
probability of observing at least 1 event is 1−0.03 = 97%, and the pileup probability
P (Nt ≥ 2) = 86.4%.

n 0 1 2 3 4 5

P (Nt = n) 0.030 0.106 0.185 0.216 0.189 0.132
P (Nt > n) 0.970 0.864 0.679 0.463 0.274 0.142

Table 1: Poisson distribution for the total number of events per bunch-crossing for L/k =
3.6 × 1029 cm−2s−1 (νt = 3.5).
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2. The typical β∗ = 90m scenario: L = 3× 1030 cm−2s−1 and k = 156
(L/k = 1.9 × 1028 cm−2s−1):
Here, the mean bunch distance is 〈∆tbunch〉 = 570 ns, and per bunch crossing a mean
number of νt = 0.188 events is observed. Table 2 gives some values for P (Nt). In
this scenario, the probability of observing at least 1 event is 17%, and the pileup
probability P (Nt ≥ 2) = 1.5%.

n 0 1 2 3

P (Nt = n) 0.8285 0.1558 0.0147 0.0009
P (Nt > n) 0.1715 0.0157 0.0010 0.0001

Table 2: Poisson distribution for the total number of events per bunch-crossing for L/k =
1.9 × 1028 cm−2s−1 (νt = 0.188).

2 Pileup Probability for Specific Event Classes

Question: What is the probability of observing in 1 bunch-crossing a total number of Nt

events out of which NA belong to class A, NB to class B etc.?

We decompose the total cross-section as

σt = σA + σB + ... + σR (4)

or, in terms of the number of events,

Nt = NA + NB + ... + NR (5)

where the event class R stands for the unspecified rest. In this note, we consider the two
simplest cases with 1 and 2 specified event classes.

2.1 One Specified Event Class

The simplified question is: What is the probability of observing in 1 bunch-crossing a total
number of Nt events out of which NA are of type A, for example elastic scattering events?

The event number decomposition now reads:

Nt = NA + NR (6)

The quantity requested is the two-dimensional probability P (NA, Nt). From the indepen-
dence of the classes A and R follows directly:

P (NA, Nt) =
νNA

A

NA!
e−νA

(νt − νA)Nt−NA

(Nt − NA)!
e−(νt−νA) (7)

A different approach – which formally confirms the independence of A and R – is to express
P (NA, Nt) as

P (NA, Nt) = P (NA|Nt)P (Nt) (8)

where P (Nt) is given by (1), and the conditional probability P (NA|Nt) follows the binomial
distribution

P (NA|Nt) =

(

Nt

NA

)(

νA

νt

)NA
[

1 −
νA

νt

]Nt−NA

(9)
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Note that here the prerequisites for a Poisson approximation are not fulfilled: Nt is not
very big, and νA/νt is not necessarily very small (e.g. it isn’t if A stands for elastic
scattering).
Combining (1) and (9) in (8) we obtain

P (NA, Nt) =

(

Nt

NA

)(

νA

νt

)NA
[

1 −
νA

νt

]Nt−NA νNt

t

Nt!
e−νt (10)

which is equivalent to (7).
As examples, Tables 3 and 4 show P (NA, Nt) for the typical 0.5 m and 90 m running
scenarios, in the case where A stands for elastic scattering.

Nt

NA 0 1 2 3 4 5 P (NA)

0 0.030 0.077 0.098 0.083 0.053 0.027 0.387
1 0 0.029 0.073 0.093 0.080 0.051 0.368
2 0 0 0.014 0.035 0.045 0.038 0.175
3 0 0 0 0.0044 0.011 0.014 0.055
4 0 0 0 0 0.001 0.003 0.013

Table 3: P (NA, Nt) for A = elastic assuming σelastic = 30mb, for L/k = 3.6×1029 cm−2s−1

(νt = 3.5, νA = 0.95, νA/νt = 0.273, 1 − νA/νt = 0.727).

Nt

NA 0 1 2 3 P (NA)

0 0.8285 0.1133 0.0077 0.00035 0.9499
1 0 0.0426 0.0058 0.00040 0.0488
2 0 0 0.0011 0.00015 0.0013
3 0 0 0 1.8 × 10−5 2.1 × 10−5

Table 4: P (NA, Nt) for A = elastic assuming σelastic = 30mb, for L/k = 1.9×1028 cm−2s−1

(νt = 0.188, νA = 0.051, νA/νt = 0.273, 1 − νA/νt = 0.727).

Special limit:
Which is the probability of observing Nt events out of which 1 is of a very rare type A,
i.e. NA = 1 and νA/νt → 0 ?
Eqn. (9) now reduces to

P (NA = 1|Nt) = Nt

νA

νt

[

1 −
νA

νt

]Nt−1

→ Nt

νA

νt

, (11)

and our result is

P (NA = 1, Nt) → Nt

νA

νt

νNt

t

Nt!
e−νt = νA

νNt−1
t

(Nt − 1)!
e−νt (12)

2.2 Two Specified Event Classes

What is the probability of observing in 1 bunch-crossing a total number of Nt events out
of which NA belong to class A and NB to class B?
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Analogously to the previous section, P (NA, NB , Nt) can be written either as

P (NA, NB , Nt) =
νNA

A

NA!
e−νA

νNB

B

NB !
e−νB

(νt − νA − νB)Nt−NA−NB

(Nt − NA − NB)!
e−(νt−νA−νB) (13)

or as

P (NA, NB , Nt) =

(

NA + NB

NA

)(

νA

νA + νB

)NA
[

1 −
νA

νA + νB

]NB

×

(

Nt

NA + NB

)(

νA + νB

νt

)NA+NB
[

1 −
νA + νB

νt

]Nt−NA−NB

×
νNt

t

Nt!
e−νt (14)

Tables 5 and 6 show the case of A = elastic and B = NSD for the two scenarios considered.

Nt

NA, NB 0 1 2 3 4 5

0, 0 0.030 0.010 0.002 0.0002 2 × 10−5 8 × 10−7

0, 1 0 0.067 0.022 0.004 0.0004 4 × 10−5

1, 0 0 0.029 0.010 0.002 0.0002 2 × 10−5

0, 2 0 0 0.075 0.025 0.004 0.0004
1, 1 0 0 0.064 0.021 0.003 0.0004
2, 0 0 0 0.014 0.005 0.0007 8 × 10−5

0, 3 0 0 0 0.055 0.018 0.003
1, 2 0 0 0 0.071 0.023 0.004
2, 1 0 0 0 0.030 0.010 0.002
3, 0 0 0 0 0.004 0.001 0.0002
0, 4 0 0 0 0 0.031 0.010
1, 3 0 0 0 0 0.053 0.017
2, 2 0 0 0 0 0.034 0.011
3, 1 0 0 0 0 0.010 0.003
4, 0 0 0 0 0 0.001 0.0003

Table 5: P (NA, NB , Nt) for A = elastic, B = NSD, (i.e. R = SD) assuming σelastic = 30mb
and σNSD = 70mb, for L/k = 3.6 × 1029 cm−2s−1 (νt = 3.5, νelastic = 0.95, νNSD = 2.22,
νSD = 0.33).
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Nt

NA, NB 0 1 2 3

0, 0 0.8285 0.0140 0.00012 7 × 10−7

0, 1 0 0.0993 0.0017 0.00001
1, 0 0 0.0425 0.00072 6 × 10−6

0, 2 0 0 0.0059 0.00010
1, 1 0 0 0.0051 0.00009
2, 0 0 0 0.0011 0.00002
0, 3 0 0 0 0.00024
1, 2 0 0 0 0.00031
2, 1 0 0 0 0.00013
3, 0 0 0 0 0.00002

Table 6: P (NA, NB , Nt) for A = elastic, B = NSD, (i.e. R = SD) assuming σelastic =
30mb and σNSD = 70mb, for L/k = 1.9 × 1028 cm−2s−1 (νt = 0.188, νelastic = 0.051,
νNSD = 0.120, νSD = 0.017).

3 Number of Events per Bunch-Crossing under the Condi-

tion of Having a Trigger

Suppose we trigger on events of class A (which may even represent a minimum bias trigger
as a special case). In one bunch crossing there can be at most one trigger, even if several
events of type A have occurred. Hence, the trigger condition can be written as NA ≥ 1.
Which is the probability distribution and which is the mean of the total number of events
in a bunch crossing under the condition that a trigger has been given?

3.1 Probability Distribution

The conditional probability distribution we are aiming at is formally expressed as

P (Nt|NA ≥ 1) =
P (Nt, NA ≥ 1)

P (NA ≥ 1)
(15)

Since P (NA) follows a Poisson distribution, the denominator becomes

P (NA ≥ 1) = 1 − e−νA (16)

where as the enumerator is resolved using (8) and (9):

P (Nt, NA ≥ 1) = P (Nt)
Nt
∑

NA=1

(

Nt

NA

)(

νA

νt

)NA
[

1 −
νA

νt

]Nt−NA

= P (Nt)





Nt
∑

NA=0

(

Nt

NA

)(

νA

νt

)NA
(

1 −
νA

νt

)Nt−NA

−

(

1 −
νA

νt

)Nt





= P (Nt)

[

1 −

(

1 −
νA

νt

)Nt

]

(17)
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Finally

P (Nt|NA ≥ 1) = P (Nt)
1 −

(

1 − νA

νt

)Nt

1 − e−νA

=
νNt

t

Nt!
e−νt

1 −
(

1 − νA

νt

)Nt

1 − e−νA

(18)

Let us now consider two special cases:

• Minimum Bias Trigger:
In this case, νA = νt. Hence

P (Nt|Nt ≥ 1) =
νNt

t

Nt!

e−νt

1 − e−νt
(19)

• Triggering on a very rare event class:
In this limit, νA � 1.

P (Nt|NA ≥ 1) →
νNt

t

Nt!
e−νt

1 −
(

1 − Nt
νA

νt

)

1 − 1 + νA

=
νNt−1

t

(Nt − 1)!
e−νt

= P (Nt − 1) (20)

3.2 Mean Number of Events

The mean number of events in a bunch crossing where a trigger has been observed is given
by

〈Nt〉NA≥1 =
∞
∑

Nt=0

Nt P (Nt|NA ≥ 1) (21)

Using (18) for the general case gives

〈Nt〉NA≥1 =

∞
∑

Nt=0

Nt

νNt

t

Nt!
e−νt

[

1 −

(

1 −
νA

νt

)Nt

]

1 − e−νA

= νt

∞
∑

Nt=1

νNt−1
t

(Nt − 1)!
e−νt

[

1 −

(

1 −
νA

νt

)Nt−1 (

1 −
νA

νt

)

]

1 − e−νA

= νt

∞
∑

Nt=0

νNt

t

Nt!
e−νt −

(

1 −
νA

νt

) ∞
∑

Nt=0

νNt

t

Nt!
e−νt

(

1 −
νA

νt

)Nt

1 − e−νA

= νt

1 −
(

1 − νA

νt

)

e−νA

∞
∑

Nt=0

[

νt

(

1 − νA

νt

)]Nt

Nt!
e
−νt

“

1−
νA

νt

”

1 − e−νA

= νt

1 −
(

1 − νA

νt

)

e−νA

1 − e−νA

= νt

[

1 +
νA

νt

e−νA

1 − e−νA

]

(22)
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Again, we shall illustrate this formula with the same special cases as in the previous
section.

• Minimum Bias Trigger:
In this case, νA = νt. Hence

〈Nt〉Nt≥1 = νt

[

1 +
e−νt

1 − e−νt

]

(23)

For νt = 3.5, we obtain

〈Nt〉Nt≥1 = 3.5

(

1 +
0.030

0.970

)

= 3.6 ,

and for νt = 0.188:

〈Nt〉Nt≥1 = 0.188

(

1 +
0.829

0.171

)

= 1.097 .

• Triggering on a very rare event class:
In this limit, νA � 1.

〈Nt〉NA≥1 → νt

[

1 +
νA

νt

1 − νA

1 − 1 + νA

]

= νt + 1 − νA (24)

→ νt + 1 (25)

Note that this formula – “very well known to everybody for at least 30 years” [1] –
applies only to this special limit and not to the general case.

Figure 1 shows 〈Nt〉NA≥1 as a function of νA for νt = 3.5 in the general case (22) and in the
approximation for small νA (24). Note that in the cases of elastic scattering (νA = 0.95)
and single diffraction (νA = 0.33) the general formula must be used whereas for Double
Pomeron exchange (νA = 0.03 assuming σDPE = 1mb) both approximations (24) and (25)
are within ±0.33 % from the true value.
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Figure 1: 〈Nt〉NA≥1 for L/k = 3.6 × 1029 cm−2s−1 (νt = 3.5) as a function of νA for the
general case (22) and in the approximation for small νA (24).

Figure 2 shows the same for νt = 0.188.
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Figure 2: 〈Nt〉NA≥1 for L/k = 1.9 × 1028 cm−2s−1 (νt = 0.188) as a function of νA for the
general case (22) and in the approximation for small νA (24).

References

[1] Anonymous: private communication.

8


