Pileup Probabilities and Events per Bunch-Crossing

M. Deile

April 15, 2008

Abstract

This note collects some formulae and numbers for dealing with pileup at the LHC.

1 Introduction

The total number of events per bunch-crossing follows a Poisson distribution

$$
\begin{equation*}
P\left(N_{t}\right)=\frac{\nu_{t}^{N_{t}}}{N_{t}!} \mathrm{e}^{-\nu_{t}} \tag{1}
\end{equation*}
$$

with mean

$$
\begin{equation*}
\nu_{t}=\left\langle N_{t}\right\rangle=\sigma_{t} \mathcal{L}\left\langle\Delta t_{\text {bunch }}\right\rangle \tag{2}
\end{equation*}
$$

where the mean bunch distance is given by

$$
\begin{equation*}
\left\langle\Delta t_{\text {bunch }}\right\rangle=\frac{1}{f_{L H C} k} \tag{3}
\end{equation*}
$$

The LHC revolution frequency is $f_{L H C}=11.245 \mathrm{kHz}$. For the total cross-section we assume $\sigma_{t}=110 \mathrm{mb}$. The luminosity \mathcal{L} and the number of bunches k depend on the running conditions. We consider two cases:

1. A typical $\beta^{*}=\mathbf{0 . 5} \mathrm{m}$ scenario: $\mathcal{L}=10^{\mathbf{3 3}} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$ and $\mathrm{k}=\mathbf{2 8 0 8}$ $\left(\mathcal{L} / \mathbf{k}=\mathbf{3 . 6} \times \mathbf{1 0}^{\mathbf{2 9}} \mathrm{cm}^{-2} \mathrm{~s}^{-1}\right):$
In this case, $\left\langle\Delta t_{\text {bunch }}\right\rangle=31.67 \mathrm{~ns}$ (not the minimum bunch distance of $25 \mathrm{~ns}!$). This yields $\nu_{t}=3.5$ events per bunch crossing.

Some distribution values for $P\left(N_{t}\right)$ are given in Table 1. We conclude that the probability of observing at least 1 event is $1-0.03=97 \%$, and the pileup probability $P\left(N_{t} \geq 2\right)=86.4 \%$.

n	0	1	2	3	4	5
$P\left(N_{t}=n\right)$	0.030	0.106	0.185	0.216	0.189	0.132
$P\left(N_{t}>n\right)$	0.970	0.864	0.679	0.463	0.274	0.142

Table 1: Poisson distribution for the total number of events per bunch-crossing for $\mathcal{L} / k=$ $3.6 \times 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\left(\nu_{t}=3.5\right)$.
2. The typical $\beta^{*}=\mathbf{9 0} \mathrm{m}$ scenario: $\mathcal{L}=\mathbf{3} \times 10^{\mathbf{3 0}} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$ and $\mathrm{k}=\mathbf{1 5 6}$
$\left(\mathcal{L} / \mathbf{k}=\mathbf{1 . 9} \times \mathbf{1 0}^{\mathbf{2 8}} \mathrm{cm}^{-2} \mathrm{~s}^{-1}\right):$
Here, the mean bunch distance is $\left\langle\Delta t_{\text {bunch }}\right\rangle=570 \mathrm{~ns}$, and per bunch crossing a mean number of $\nu_{t}=0.188$ events is observed. Table 2 gives some values for $P\left(N_{t}\right)$. In this scenario, the probability of observing at least 1 event is 17%, and the pileup probability $P\left(N_{t} \geq 2\right)=1.5 \%$.

n	0	1	2	3
$P\left(N_{t}=n\right)$	0.8285	0.1558	0.0147	0.0009
$P\left(N_{t}>n\right)$	0.1715	0.0157	0.0010	0.0001

Table 2: Poisson distribution for the total number of events per bunch-crossing for $\mathcal{L} / k=$ $1.9 \times 10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\left(\nu_{t}=0.188\right)$.

2 Pileup Probability for Specific Event Classes

Question: What is the probability of observing in 1 bunch-crossing a total number of N_{t} events out of which N_{A} belong to class A, N_{B} to class B etc.?
We decompose the total cross-section as

$$
\begin{equation*}
\sigma_{t}=\sigma_{A}+\sigma_{B}+\ldots+\sigma_{R} \tag{4}
\end{equation*}
$$

or, in terms of the number of events,

$$
\begin{equation*}
N_{t}=N_{A}+N_{B}+\ldots+N_{R} \tag{5}
\end{equation*}
$$

where the event class R stands for the unspecified rest. In this note, we consider the two simplest cases with 1 and 2 specified event classes.

2.1 One Specified Event Class

The simplified question is: What is the probability of observing in 1 bunch-crossing a total number of N_{t} events out of which N_{A} are of type A, for example elastic scattering events? The event number decomposition now reads:

$$
\begin{equation*}
N_{t}=N_{A}+N_{R} \tag{6}
\end{equation*}
$$

The quantity requested is the two-dimensional probability $P\left(N_{A}, N_{t}\right)$. From the independence of the classes A and R follows directly:

$$
\begin{equation*}
P\left(N_{A}, N_{t}\right)=\frac{\nu_{A}^{N_{A}}}{N_{A}!} \mathrm{e}^{-\nu_{A}} \frac{\left(\nu_{t}-\nu_{A}\right)^{N_{t}-N_{A}}}{\left(N_{t}-N_{A}\right)!} \mathrm{e}^{-\left(\nu_{t}-\nu_{A}\right)} \tag{7}
\end{equation*}
$$

A different approach - which formally confirms the independence of A and R - is to express $P\left(N_{A}, N_{t}\right)$ as

$$
\begin{equation*}
P\left(N_{A}, N_{t}\right)=P\left(N_{A} \mid N_{t}\right) P\left(N_{t}\right) \tag{8}
\end{equation*}
$$

where $P\left(N_{t}\right)$ is given by (1), and the conditional probability $P\left(N_{A} \mid N_{t}\right)$ follows the binomial distribution

$$
\begin{equation*}
P\left(N_{A} \mid N_{t}\right)=\binom{N_{t}}{N_{A}}\left(\frac{\nu_{A}}{\nu_{t}}\right)^{N_{A}}\left[1-\frac{\nu_{A}}{\nu_{t}}\right]^{N_{t}-N_{A}} \tag{9}
\end{equation*}
$$

Note that here the prerequisites for a Poisson approximation are not fulfilled: N_{t} is not very big, and ν_{A} / ν_{t} is not necessarily very small (e.g. it isn't if A stands for elastic scattering).
Combining (1) and (9) in (8) we obtain

$$
\begin{equation*}
P\left(N_{A}, N_{t}\right)=\binom{N_{t}}{N_{A}}\left(\frac{\nu_{A}}{\nu_{t}}\right)^{N_{A}}\left[1-\frac{\nu_{A}}{\nu_{t}}\right]^{N_{t}-N_{A}} \frac{\nu_{t}^{N_{t}}}{N_{t}!} \mathrm{e}^{-\nu_{t}} \tag{10}
\end{equation*}
$$

which is equivalent to (7).
As examples, Tables 3 and 4 show $P\left(N_{A}, N_{t}\right)$ for the typical 0.5 m and 90 m running scenarios, in the case where A stands for elastic scattering.

	N_{t}						
N_{A}	0	1	2	3	4	5	$P\left(N_{A}\right)$
0	0.030	0.077	0.098	0.083	0.053	0.027	0.387
1	0	0.029	0.073	0.093	0.080	0.051	0.368
2	0	0	0.014	0.035	0.045	0.038	0.175
3	0	0	0	0.0044	0.011	0.014	0.055
4	0	0	0	0	0.001	0.003	0.013

Table 3: $P\left(N_{A}, N_{t}\right)$ for A $=$ elastic assuming $\sigma_{\text {elastic }}=30 \mathrm{mb}$, for $\mathcal{L} / k=3.6 \times 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ ($\nu_{t}=3.5, \nu_{A}=0.95, \nu_{A} / \nu_{t}=0.273,1-\nu_{A} / \nu_{t}=0.727$).

		N_{t}			
N_{A}	0	1	2	3	$P\left(N_{A}\right)$
0	0.8285	0.1133	0.0077	0.00035	0.9499
1	0	0.0426	0.0058	0.00040	0.0488
2	0	0	0.0011	0.00015	0.0013
3	0	0	0	1.8×10^{-5}	2.1×10^{-5}

Table 4: $P\left(N_{A}, N_{t}\right)$ for A $=$ elastic assuming $\sigma_{\text {elastic }}=30 \mathrm{mb}$, for $\mathcal{L} / k=1.9 \times 10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ ($\left.\nu_{t}=0.188, \nu_{A}=0.051, \nu_{A} / \nu_{t}=0.273,1-\nu_{A} / \nu_{t}=0.727\right)$.

Special limit:

Which is the probability of observing N_{t} events out of which 1 is of a very rare type A, i.e. $N_{A}=1$ and $\nu_{A} / \nu_{t} \rightarrow 0$?

Eqn. (9) now reduces to

$$
\begin{equation*}
P\left(N_{A}=1 \mid N_{t}\right)=N_{t} \frac{\nu_{A}}{\nu_{t}}\left[1-\frac{\nu_{A}}{\nu_{t}}\right]^{N_{t}-1} \rightarrow N_{t} \frac{\nu_{A}}{\nu_{t}}, \tag{11}
\end{equation*}
$$

and our result is

$$
\begin{equation*}
P\left(N_{A}=1, N_{t}\right) \rightarrow N_{t} \frac{\nu_{A}}{\nu_{t}} \frac{\nu_{t}^{N_{t}}}{N_{t}!} \mathrm{e}^{-\nu_{t}}=\nu_{A} \frac{\nu_{t}^{N_{t}-1}}{\left(N_{t}-1\right)!} \mathrm{e}^{-\nu_{t}} \tag{12}
\end{equation*}
$$

2.2 Two Specified Event Classes

What is the probability of observing in 1 bunch-crossing a total number of N_{t} events out of which N_{A} belong to class A and N_{B} to class B?

Analogously to the previous section, $P\left(N_{A}, N_{B}, N_{t}\right)$ can be written either as

$$
\begin{equation*}
P\left(N_{A}, N_{B}, N_{t}\right)=\frac{\nu_{A}^{N_{A}}}{N_{A}!} \mathrm{e}^{-\nu_{A}} \frac{\nu_{B}^{N_{B}}}{N_{B}!} \mathrm{e}^{-\nu_{B}} \frac{\left(\nu_{t}-\nu_{A}-\nu_{B}\right)^{N_{t}-N_{A}-N_{B}}}{\left(N_{t}-N_{A}-N_{B}\right)!} \mathrm{e}^{-\left(\nu_{t}-\nu_{A}-\nu_{B}\right)} \tag{13}
\end{equation*}
$$

or as

$$
\begin{align*}
P\left(N_{A}, N_{B}, N_{t}\right) & =\binom{N_{A}+N_{B}}{N_{A}}\left(\frac{\nu_{A}}{\nu_{A}+\nu_{B}}\right)^{N_{A}}\left[1-\frac{\nu_{A}}{\nu_{A}+\nu_{B}}\right]^{N_{B}} \\
& \times\binom{ N_{t}}{N_{A}+N_{B}}\left(\frac{\nu_{A}+\nu_{B}}{\nu_{t}}\right)^{N_{A}+N_{B}}\left[1-\frac{\nu_{A}+\nu_{B}}{\nu_{t}}\right]^{N_{t}-N_{A}-N_{B}} \\
& \times \frac{\nu_{t}^{N_{t}}}{N_{t}!} \mathrm{e}^{-\nu_{t}} \tag{14}
\end{align*}
$$

Tables 5 and 6 show the case of $\mathrm{A}=$ elastic and $\mathrm{B}=\mathrm{NSD}$ for the two scenarios considered.

			N_{t}				
N_{A}, N_{B}	0	1	2	3	4	5	
0,0	0.030	0.010	0.002	0.0002	2×10^{-5}	8×10^{-7}	
0,1	0	0.067	0.022	0.004	0.0004	4×10^{-5}	
1,0	0	0.029	0.010	0.002	0.0002	2×10^{-5}	
0,2	0	0	0.075	0.025	0.004	0.0004	
1,1	0	0	0.064	0.021	0.003	0.0004	
2,0	0	0	0.014	0.005	0.0007	8×10^{-5}	
0,3	0	0	0	0.055	0.018	0.003	
1,2	0	0	0	0.071	0.023	0.004	
2,1	0	0	0	0.030	0.010	0.002	
3,0	0	0	0	0.004	0.001	0.0002	
0,4	0	0	0	0	0.031	0.010	
1,3	0	0	0	0	0.053	0.017	
2,2	0	0	0	0	0.034	0.011	
3,1	0	0	0	0	0.010	0.003	
4,0	0	0	0	0	0.001	0.0003	

Table 5: $P\left(N_{A}, N_{B}, N_{t}\right)$ for $\mathrm{A}=$ elastic, $\mathrm{B}=\mathrm{NSD}$, (i.e. $\left.\mathrm{R}=\mathrm{SD}\right)$ assuming $\sigma_{\text {elastic }}=30 \mathrm{mb}$ and $\sigma_{N S D}=70 \mathrm{mb}$, for $\mathcal{L} / k=3.6 \times 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\left(\nu_{t}=3.5, \nu_{\text {elastic }}=0.95, \nu_{N S D}=2.22\right.$, $\left.\nu_{S D}=0.33\right)$.

	N_{t}			
N_{A}, N_{B}	0	1	2	3
0,0	0.8285	0.0140	0.00012	7×10^{-7}
0,1	0	0.0993	0.0017	0.00001
1,0	0	0.0425	0.00072	6×10^{-6}
0,2	0	0	0.0059	0.00010
1,1	0	0	0.0051	0.00009
2,0	0	0	0.0011	0.00002
0,3	0	0	0	0.00024
1,2	0	0	0	0.00031
2,1	0	0	0	0.00013
3,0	0	0	0	0.00002

Table 6: $P\left(N_{A}, N_{B}, N_{t}\right)$ for $\mathrm{A}=$ elastic, $\mathrm{B}=\mathrm{NSD}$, (i.e. $\mathrm{R}=\mathrm{SD}$) assuming $\sigma_{\text {elastic }}=$ 30 mb and $\sigma_{N S D}=70 \mathrm{mb}$, for $\mathcal{L} / k=1.9 \times 10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\left(\nu_{t}=0.188, \nu_{\text {elastic }}=0.051\right.$, $\left.\nu_{N S D}=0.120, \nu_{S D}=0.017\right)$.

3 Number of Events per Bunch-Crossing under the Condition of Having a Trigger

Suppose we trigger on events of class A (which may even represent a minimum bias trigger as a special case). In one bunch crossing there can be at most one trigger, even if several events of type A have occurred. Hence, the trigger condition can be written as $N_{A} \geq 1$. Which is the probability distribution and which is the mean of the total number of events in a bunch crossing under the condition that a trigger has been given?

3.1 Probability Distribution

The conditional probability distribution we are aiming at is formally expressed as

$$
\begin{equation*}
P\left(N_{t} \mid N_{A} \geq 1\right)=\frac{P\left(N_{t}, N_{A} \geq 1\right)}{P\left(N_{A} \geq 1\right)} \tag{15}
\end{equation*}
$$

Since $P\left(N_{A}\right)$ follows a Poisson distribution, the denominator becomes

$$
\begin{equation*}
P\left(N_{A} \geq 1\right)=1-\mathrm{e}^{-\nu_{A}} \tag{16}
\end{equation*}
$$

where as the enumerator is resolved using (8) and (9):

$$
\begin{align*}
P\left(N_{t}, N_{A} \geq 1\right) & =P\left(N_{t}\right) \sum_{N_{A}=1}^{N_{t}}\binom{N_{t}}{N_{A}}\left(\frac{\nu_{A}}{\nu_{t}}\right)^{N_{A}}\left[1-\frac{\nu_{A}}{\nu_{t}}\right]^{N_{t}-N_{A}} \\
& =P\left(N_{t}\right)\left[\sum_{N_{A}=0}^{N_{t}}\binom{N_{t}}{N_{A}}\left(\frac{\nu_{A}}{\nu_{t}}\right)^{N_{A}}\left(1-\frac{\nu_{A}}{\nu_{t}}\right)^{N_{t}-N_{A}}-\left(1-\frac{\nu_{A}}{\nu_{t}}\right)^{N_{t}}\right] \\
& =P\left(N_{t}\right)\left[1-\left(1-\frac{\nu_{A}}{\nu_{t}}\right)^{N_{t}}\right] \tag{17}
\end{align*}
$$

Finally

$$
\begin{align*}
P\left(N_{t} \mid N_{A} \geq 1\right) & =P\left(N_{t}\right) \frac{1-\left(1-\frac{\nu_{A}}{\nu_{t}}\right)^{N_{t}}}{1-\mathrm{e}^{-\nu_{A}}} \\
& =\frac{\nu_{t}^{N_{t}}}{N_{t}!} \mathrm{e}^{-\nu_{t}} \frac{1-\left(1-\frac{\nu_{A}}{\nu_{t}}\right)^{N_{t}}}{1-\mathrm{e}^{-\nu_{A}}} \tag{18}
\end{align*}
$$

Let us now consider two special cases:

- Minimum Bias Trigger:

In this case, $\nu_{A}=\nu_{t}$. Hence

$$
\begin{equation*}
P\left(N_{t} \mid N_{t} \geq 1\right)=\frac{\nu_{t}^{N_{t}}}{N_{t}!} \frac{\mathrm{e}^{-\nu_{t}}}{1-\mathrm{e}^{-\nu_{t}}} \tag{19}
\end{equation*}
$$

- Triggering on a very rare event class:

In this limit, $\nu_{A} \ll 1$.

$$
\begin{align*}
P\left(N_{t} \mid N_{A} \geq 1\right) & \rightarrow \frac{\nu_{t}^{N_{t}}}{N_{t}!} \mathrm{e}^{-\nu_{t}} \frac{1-\left(1-N_{t} \frac{\nu_{A}}{\nu_{t}}\right)}{1-1+\nu_{A}} \\
& =\frac{\nu_{t}^{N_{t}-1}}{\left(N_{t}-1\right)!} \mathrm{e}^{-\nu_{t}} \\
& =P\left(N_{t}-1\right) \tag{20}
\end{align*}
$$

3.2 Mean Number of Events

The mean number of events in a bunch crossing where a trigger has been observed is given by

$$
\begin{equation*}
\left\langle N_{t}\right\rangle_{N_{A} \geq 1}=\sum_{N_{t}=0}^{\infty} N_{t} P\left(N_{t} \mid N_{A} \geq 1\right) \tag{21}
\end{equation*}
$$

Using (18) for the general case gives

$$
\begin{align*}
\left\langle N_{t}\right\rangle_{N_{A} \geq 1} & =\frac{\sum_{N_{t}=0}^{\infty} N_{t} \frac{\nu_{t}^{N_{t}}}{N_{t}!} \mathrm{e}^{-\nu_{t}}\left[1-\left(1-\frac{\nu_{A}}{\nu_{t}}\right)^{N_{t}}\right]}{1-\mathrm{e}^{-\nu_{A}}} \\
& =\nu_{t} \frac{\sum_{N_{t}=1}^{\infty} \frac{\nu_{t}^{N_{t}-1}}{\left(N_{t}-1\right)!} \mathrm{e}^{-\nu_{t}}\left[1-\left(1-\frac{\nu_{A}}{\nu_{t}}\right)^{N_{t}-1}\left(1-\frac{\nu_{A}}{\nu_{t}}\right)\right]}{1-\mathrm{e}^{-\nu_{A}}} \\
& =\nu_{t} \frac{\sum_{N_{t}=0}^{\infty} \frac{\nu_{t}^{N_{t}}}{N_{t}!} \mathrm{e}^{-\nu_{t}}-\left(1-\frac{\nu_{A}}{\nu_{t}}\right) \sum_{N_{t}=0}^{\infty} \frac{\nu_{t}^{N_{t}}}{N_{t}!} \mathrm{e}^{-\nu_{t}}\left(1-\frac{\nu_{A}}{\nu_{t}}\right)^{N_{t}}}{1-\mathrm{e}^{-\nu_{A}}} \\
& =\nu_{t} \frac{1-\left(1-\frac{\nu_{A}}{\nu_{t}}\right) \mathrm{e}^{-\nu_{A}} \sum_{N_{t}=0}^{\infty} \frac{\left[\nu_{t}\left(1-\frac{\nu_{A}}{\nu_{t}}\right)\right]^{N_{t}}}{N_{t}!} \mathrm{e}^{-\nu_{t}\left(1-\frac{\nu_{A}}{\nu_{t}}\right)}}{1-\mathrm{e}^{-\nu_{A}}} \\
& =\nu_{t} \frac{1-\left(1-\frac{\nu_{A}}{\nu_{t}}\right) \mathrm{e}^{-\nu_{A}}}{1-\mathrm{e}^{-\nu_{A}}} \\
& =\nu_{t}\left[1+\frac{\nu_{A}}{\nu_{t}} \frac{\mathrm{e}^{-\nu_{A}}}{1-\mathrm{e}^{-\nu_{A}}}\right] \tag{22}
\end{align*}
$$

Again, we shall illustrate this formula with the same special cases as in the previous section.

- Minimum Bias Trigger:

In this case, $\nu_{A}=\nu_{t}$. Hence

$$
\begin{equation*}
\left\langle N_{t}\right\rangle_{N_{t} \geq 1}=\nu_{t}\left[1+\frac{\mathrm{e}^{-\nu_{t}}}{1-\mathrm{e}^{-\nu_{t}}}\right] \tag{23}
\end{equation*}
$$

For $\nu_{t}=3.5$, we obtain

$$
\left\langle N_{t}\right\rangle_{N_{t} \geq 1}=3.5\left(1+\frac{0.030}{0.970}\right)=3.6
$$

and for $\nu_{t}=0.188$:

$$
\left\langle N_{t}\right\rangle_{N_{t} \geq 1}=0.188\left(1+\frac{0.829}{0.171}\right)=1.097 .
$$

- Triggering on a very rare event class:

In this limit, $\nu_{A} \ll 1$.

$$
\begin{align*}
\left\langle N_{t}\right\rangle_{N_{A} \geq 1} & \rightarrow \nu_{t}\left[1+\frac{\nu_{A}}{\nu_{t}} \frac{1-\nu_{A}}{1-1+\nu_{A}}\right] \\
& =\nu_{t}+1-\nu_{A} \tag{24}\\
& \rightarrow \nu_{t}+1 \tag{25}
\end{align*}
$$

Note that this formula - "very well known to everybody for at least 30 years" [1] applies only to this special limit and not to the general case.

Figure 1 shows $\left\langle N_{t}\right\rangle_{N_{A} \geq 1}$ as a function of ν_{A} for $\nu_{t}=3.5$ in the general case (22) and in the approximation for small ν_{A} (24). Note that in the cases of elastic scattering ($\nu_{A}=0.95$) and single diffraction ($\nu_{A}=0.33$) the general formula must be used whereas for Double Pomeron exchange ($\nu_{A}=0.03$ assuming $\sigma_{D P E}=1 \mathrm{mb}$) both approximations (24) and (25) are within $\pm 0.33 \%$ from the true value.

Figure 1: $\left\langle N_{t}\right\rangle_{N_{A} \geq 1}$ for $\mathcal{L} / k=3.6 \times 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\left(\nu_{t}=3.5\right)$ as a function of ν_{A} for the general case (22) and in the approximation for small $\nu_{A}(24)$.

Figure 2 shows the same for $\nu_{t}=0.188$.

Figure 2: $\left\langle N_{t}\right\rangle_{N_{A} \geq 1}$ for $\mathcal{L} / k=1.9 \times 10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\left(\nu_{t}=0.188\right)$ as a function of ν_{A} for the general case (22) and in the approximation for small $\nu_{A}(24)$.

References

[1] Anonymous: private communication.

