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Abstract
This note describes an elastic event reconstruction method developed for the TOTEM experiment. It is based on
linear track parameterization and linear track fit. The suggested method has been implemented within simula-
tion/reconstruction software framework and results for 1540 and 90 m optics are given. Obtained resolution is
compared to analytic estimates presented in the appendix.

1. Introduction

The step which precedes the elastic reconstruction is fit on one-RP level. The results of that step are
local track fits, i.e. positions x, y and angles ϑx, ϑy (plus covariance matrix for all these parameters).
However, one RP (ca 3 cm thick) presents a lever-arm too small for an interesting angular measurement,
see Fig. 1. And therefore, only position information can be used for fitting.

In principle, one may also employ the knowledge of vertex distribution at the IP. That can be under-
stood as a fictitious measurement at IP with uncertainty given by beam width. Corresponding optical
functions would be L = 0 m, v = 0 for both projections. The question whether this makes sense will be
addressed after presenting the method and the algorithm of reconstruction.

Regardless whether the IP information is used, input data form a list of (x, σx, y, σy |Lx, Ly, vx, vy),
one per RP (or IP measurement).
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Figure 1: ϑy generated (at IP) vs. reconstructed (at RP) for 90 m optics: no interesting correlation. The reason is too small
lever-arm for the given detector pitch. One can clearly see the strip pattern.

2. Method

Tracks of protons travelling from IP to detectors can be well described by 1)

x(s) = Lx(s)ϑ
∗
x + vx(s)x

∗ +D(s) ξ y(s) = Ly(s)ϑ
∗
y + vy(s) y

∗ , (1)

1) We use the standard coordinate frame: s axis goes along beam in clock-wise direction and x points outside the ring. y axis is
chosen such as the coordinate system is right-handed.
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where the quantities with stars refer to the state of the proton at IP. For elastic scattering ξ ≡ 0 and
therefore dependencies for both coordinates obtain the same form. Thus, ζ will be used to refer to
whichever of x and y variables.

Obviously, the fitting model used is

ζ(s) = v(s) ζ∗ + L(s)ϑ∗ . (2)

Working out the linear fit equations (see e.g. Eq. (6.23) in [1]), the estimate for vertex position ζ∗ and
scattering angle (at vertex) ϑ∗ is
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where for instance
∑

ζL means
∑

i ζ(si)L(si)/σ2(si). The sums go over all detectors involved in the
event and ζ(si) is the hit position in corresponding detector. σ denotes measurement uncertainty. The
covariance matrix (see e.g. Eq. (6.24) in [1])
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. (4)

3. Algorithm

The algorithm comprises the three steps below.

1) Hit selection. The aim of this step is to choose from all the hits only those which belong to the actual
track (of elastic protons). Which in turn means to suppress background and tracks from secondary
interactions in detectors etc. It is assumed that the L ϑ∗ term dominates in Eq. (2), i.e. at least
approximate parallel-to-point focusing. For each hit, value of ζ(s)/L(s) is calculated and a road
search algorithm is applied. Only road with the highest weight and at least one hit on both sides can
continue. Parameters of this search are (angular) road sizes for x and y projections.
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Figure 2: Principle of the road search algorithm. Left: hits in RPs shown vs. corresponding effective length. Hits by elastic protons
displayed in blue, background in red. Right: histogram of angles y/Ly . Elastic hits pile up to high tower (i.e. road with highest
weight).

2) Fitting. There are three fits performed: left-arm fit, right-arm fit and global fit. Obviously, left-arm
fit is carried out through hits from the left-arm only (plus IP if applicable), etc.

3) Cut application. This step is used to distinguish elastic scattering from other processes. It exploits
properties of elastic scattering, namely reconstructed angles and vertex positions shall be identical
for left and right fits. Therefore, the cut requires the left-right differences to be smaller than a certain
limit. The parameters of this step are, hence, angular and vertex difference tolerances. Indeed, for
both projections x and y.
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4. Usefulness of IP information

Here, we are coming back to the question whether it is worth adding a fictitious measurement at IP to
the list of hits 2). To answer the question, let’s assume the optics is symmetric i.e.

L(−s) = −L(s), v(−s) = v(s)

(that assumption is true for ideal 1540 and 90 m optics). Then 3), the fit equation boils down to

ζ∗ =

∑

ζv
∑

v2
, ϑ∗ =

∑

ζL
∑

L2
. (5)

One can clearly see that the IP measurement has no impact on angular reconstruction of ϑ∗. As
effective length associated to IP is zero, both numerator and denominator remain unchanged. The
situation is different for ζ∗ reconstruction, so let’s rewrite the expression explicitly separating RP and IP
contributions

ζ∗ =

∑ ζivi

σ2
i

+ ζIP
σ2
IP

∑ v2
i

σ2
i

+ 1
σ2
IP

,

where the index i = 1 . . .N labels RP hits. Looking at denominator, one can estimate that the influence
of IP information would be irrelevant if

v ≫ 1√
N

σ

σIP
, (6)

where v denotes a typical value of vi and similarly σ means typical σi. Validity of this condition can
verified with use of Tabs. 1 and 2. For 1540 m optics one finds both sides of Eq. (6) to be of order 10−2

and thus the condition is false. While for 90 m optics the condition 2 ≫ 6 · 10−2 is true. Anyway,
vertex reconstruction is not our primary concern and therefore IP information will not be used unless
necessary.

The necessity for IP information may be seen in the following example. Imagine the situation where
only one RP per arm was active in the event. We need to perform one-arm fits to verify the identity of
the event, but one hit is not enough to fit two parameters. This is the only case when the IP information
is used.

5. Estimate of the parameters

As explained above, there are 6 parameters governing the reconstruction, namely road sizes, angular and
vertex tolerances for both projections. Here, we try to estimate reasonable values of those parameters.

The road size is meant as a coarse seed for principal track search. Thus, it makes sense to set it to
approximately to T/L, where T is size of a trigger zone and L is typical effective length. The road size
should definitely distinguish between top and bottom RPs. That is if ∆ is distance between top and
bottom RP edges, the road size should be < ∆/L.

Regarding the angular tolerance parameter, a good choice seems to be a few times pitch/L, where
again L is a typical effective length. However, in the case when beam divergence is present, the tolerance
should become ≈ σ(beam divergence).

Having in mind the 90 and 1540 m optics, it is difficult to make any estimate for vertex tolerance. The
problem arises from very small magnifications v. However, it is easy to simulate elastic events only,
apply the reconstruction with no cuts and make histograms of left-right fit differences. Eventually, the
tolerance parameters can be deduced from those histograms.

2) Let us remark that IP information has a different statistical nature than RP measurement. Let’s have a particle passing through
a RP at position ζ . Due to measurement errors the detector reports the particle at position ζm. In the language of statistics, ζm is
a sample of some distribution D, which reflects properties of measurement errors. It is reasonable to assume that mean value of
D is ζ , i.e. the actual particle position. Regarding the IP information, the role of mean and actual position is swapped. We put the
fictitious measurement to ζ = 0 (vertex mean) while the real vertex position is unknown. A naive mixing RP and IP information
may, therefore, lead to inconsistencies. Nevertheless, both types of informations can be safely used withing LS method since the
method is only sensitive to distance between actual and mean position.
3) In fact, one has to assume the fit to be symmetric too. That means if a RP at s was hit, its partner at −s was involved too.
However, this should be true for most events.
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6. Performance at �∗
= 1540 m optics

The reconstruction method was probed on a sample of 104 elastic events, generated in t-range 10−3GeV2

to 1.5 GeV2. The actual parameters of optics and detector geometry are summarized in Tab. 1. The sim-
ulation was carried out first without beam smearing and then including it (see the next two subsections).
The beam smearing characteristics can be found in Tab. 2.

The road size parameters were set to 5 µrad for x (the ∆/L estimate) and 8 µrad for y coordinate (the
T/L estimate, T = 32 · 66 µm). The tolerance parameters were set to huge numbers so no cuts were
applied.

Let us recall that double arm fits were employed (details in section 3) and no vertex information used
(more in section 4).

β∗ (m) ε (µm · rad) Lx (m) vx Ly (m) vy δx (mm) δy (mm)

1540 1 110 6 · 10−2 270 2 · 10−2 0.80 1.35

90 3.75 2.9 2.2 265 2 · 10−2 4.15 6.40

Table 1: Description of optics and detector geometry for station at 220 m. ε stands for emittance. Lx, vx, Ly and vy represent
typical values of the optical functions. Here, we put their maximal values as those contribute most to the fit. And δx or δy denotes
distance between beam and edge of horizontal or vertical detector.

β∗ (m) σϑ (µrad) σv (µm) σξ crossing angle (rad)

1540 0.295 321 10−4 0

90 2.4 150 10−4 0

Table 2: Smearing parameters used for simulation. σϑ denotes sigma of beam divergence, σv spread of vertex distribution and
σξ variance of energy smearing. Full explanation of smearing simulation and its parameters is to be found at [2].

6.1. Case without beam smearing

Fig. 3 shows errors of angular and vertex reconstruction. The right plot clearly demonstrates that vertex
resolution is poor for this optics. Relative error of t determination is shown in Fig. 4. The blue curve
represents fit of A/

√
t and it describes the data well. The fit gives A = 0.9 ·10−3 GeV, while the estimate

Eq. (A.13) predicts A = 0.8 · 10−3 GeV (for N = 6). One can conclude that both values well agree.

Figs. 5 and 6 demonstrate statistical behavior of the fits. One should emphasize that uncertainty of
RP spatial measurement was fixed to 66 µm/

√
12 4). Majority of events produced fits with two and four

degrees of freedom, that means 4 and 6 RPs were hit. The most frequent hit configuration includes 2
vertical RPs at each side and 2 horizontal RPs at one side. The second most frequent case comprises
only 2 vertical RPs at each side. Fig. 6 shows distributions of normalized residual sums for theses two
dominant hit configurations. The red and blue curves represent theoretical χ2 distributions. There is an
evident small discrepancy, the residual sums seems to be squeezed to smaller values. This suggests that
measurement uncertainties were overestimated. The right-hand side plot of Fig. 5 shows a histogram
of reconstruction error divided by fit uncertainty for ϑy. Ideally, it should be a Gaussian with unit
variance. The variance obtained is just slightly higher.

4) In fact, as there are 5 planes for each coordinate, one might expect resolution of 66 µm/
√
12 · 5. However, it is a profound

fact that a vast majority of protons hit all the five detector planes within the same strip. That’s why one cannot directly apply the
1/

√
N statistical rule.
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Figure 3: Angular (left) and vertex (right) resolutions.
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Figure 4: Relative t resolution.
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Figure 5: Left: histogram of numbers of degrees of freedom. Right: ϑy reconstruction error divided by fit uncertainty (blue line
represents a Gaussian fit).
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Figure 6: Histograms of normalized residual sums (for y fits, plots for x fits look similarly). Left for 2 degrees of freedom, right
for 4. Red and blue curves show theoretical χ2 distributions.
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Before moving to the next section, let’s briefly discus efficiency of the algorithm, i.e. numbers of
rejected events. The results are shown in Tab. 3. One can see quite low number (< 2%) of inconsistent fits,
which is correct as no constraints were imposed. The present number corresponds to pathological events
(e.g. when a proton interacts in front RP and therefore measurement in back RP is misleading). There
are many events empty or insufficient. However, this can be easily explained geometrically. Assuming
that t distribution falls off exponentially, i.e. t ∼ b exp(−bt), and ϕ is uniformly distributed on 〈0, 2π),
one finds that angles ϑx and ϑy are independent and follow normal distribution N(0, σ2 = 1/2bp2)

where p is momentum of protons. Therefore, probability of |ϑy| < ϑminy is given by

P (|ϑy | < ϑminy ) = Erf(ϑminy /
√
2σ2) . (7)

And consequently, fraction of empty and insufficient events is

P (empty) = Erf

(

δy p
√

b

Ly

)

Erf

(

δx p
√

b

Lx

)

≈ 4.4 % , (8)

P (insufficient) = Erf

(

δy p
√

b

Ly

) [

1− Erf
(

δx p
√

b

Lx

)]

≈ 13 % , (9)

where b ≈ 20 GeV−2 was used and δ and L parameters are to be found in Tab. 1. These estimates
correspond well with Tab. 3 (one should keep in mind that many effects, like insensitive edge, were not
taken into account).

fully empty insufficient inconsistent

reconstructed events events x∗ y∗ ϑx ϑy

without smearing 7867 426 1557 0 8 125 17

with smearing 7801 414 1548 0 5 154 78

Table 3: Efficiency of the algorithm (sample of 104 events). Column “empty events” refers to events with no signal and column
“insufficient events” with signal insufficient to perform the fit (see step 1 in the algorithm, section 3). The four right-most columns
show numbers of events rejected because of inconsistent right and left fits (see step 3 of the algorithm).

6.2. Case with beam smearing

Fig. 7 shows precision of angular and vertex reconstruction. The dominant error source for angular
reconstruction is the beam divergence and therefore all ϑx, ϑy and ϑ variances are practically identical 5).
The relative t-resolution shown in Fig. 8 was fitted by A/

√
t (as suggested by Eq. (A.14)) yielding

A = 2.2 · 10−3 GeV. Analytical estimate gives A = 2.2 · 10−3 GeV, which agrees with fit result.
As already said, it is useful to plot right-left fit differences, see Fig. 9. This information can be used to set

reasonable values of tolerance parameters (of course, these plots should be compared to corresponding
plots obtained for background). Considering the properties of the optics (parallel-to-point focusing),
one can expect rather a wide distribution of vertex differences. This expectation is well supported by
the figure. Therefore, cut based on vertex differences is not very promising. Regarding ∆R−Lϑy, it is
reasonable to expect it to be dominated by beam divergence. In other words, its distribution shall have
RMS of beam divergence (compare Eqs. (A.3) and (A.4)). It really does, but one might be surprised by
the peaks.

5) Since ϑ2 = ϑ2x + ϑ2y one may naively expect that σϑ > σϑx,y
. However, a careful error propagation yields

σ2ϑ = σ2
“

q

ϑ2x + ϑ2y

”

=
ϑ2x

ϑ2x + ϑ2y
σ2ϑx

+
ϑ2y

ϑ2x + ϑ2y
σ2ϑy

=
σ2bd
2

.

In the last step we employed σϑx
= σϑy

= σbd/2 (compare with δϑx in Eq. (A.4)). Therefore variances of ϑ, ϑx and ϑy are

equal.

6



reco − sim    (rad)
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−610×0

100

200

300

400

500

600
, RMS = 1.7E−07xϑerror in 

, RMS = 1.5E−07yϑerror in 

, RMS = 1.6E−07ϑerror in 

reco − sim   (m)
−0.01 −0.005 0 0.005 0.010

200

400

600

800

1000

1200

1400

1600

1800

2000
error in x*, RMS = 4.3E−04

error in y*, RMS = 2.0E−03

Figure 7: Angular (left) and vertex (right) resolutions.
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Figure 8: Relative t resolution.
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Figure 9: Right-left differences in ϑy and y∗ fit results. Plots for x coordinate are qualitatively the same.

To understand the peak appearance, we should go back and discuss what data are inserted to the
reconstruction algorithm. Every RP has 5 u and 5 v strip detectors. Measurements from each group are
(roughly speaking) averaged, yielding one u, v point per RP. This point is, then, rotated by 45 ◦ to obtain
x and y coordinates of the hit. The detectors have strip pitch P = 66 µm and therefore any possible
(single detector) measurement outcome can be written as

u or v = const.+ P k , (10)
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where k is an integer. Moreover, particles detected in RPs have very small scattering angles and thus,
very often, the same strip is hit in all 5 u, resp. v strip detectors. This means that the averaged u, v
coordinates are peaked at values given by Eq. (10). After the rotation to x, y space, the peaks in hit
distribution are separated by P/

√
2 (this is the gap between two closest x or y outcomes). This fact is

documented by Fig. 10A.
Now, one may insert Eq. (10) to Eq. (3) and find where the peaks of angular distributions are. However,

performing that in full generality would be complicated and not instructive. But, let’s try out the (so far
well working) approximation from Appendix A. Inserting yi = y0i + kiP/

√
2 into Eq. (A.1) yields

ϑ′
y = ϑ0y +

P

NLy
√
2

(

∑

R

ki −
∑

L

ki

)

. (11)

Since the factor in parentheses is integer, peaks at distance P/(
√
2NLy) can be expected. Using this

equation, let’s express the right-left difference

∆R−Lϑy ≡ ϑR
y − ϑL

y = const.+
P

2Ly
√
2

(

∑

R

ki +
∑

L

ki

)

= const.+
P

Ly
√
2
(kR + kL) , (12)

where, for simplicity, we constrained ourselves to the case with 2 hits per arm. In this simple approach,
all effective L are identical within one arm and therefore so ki’s are. In other words

∑

R ki = 2k
R, which

justifies the last equality in Eq. (12). The peaks are predicted with spacing P/(
√
2Ly) ≈ 0.17 rad, which

perfectly agrees with Fig. 9.
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Figure 10: To the explanation of peaks in ϑy distribution. Plot A shows quantization of measured y coordinate. The other
three plots describe steps of MC simulation: single effective length approach (B), realistic effective length used (C) and
finally partial (strip-)quantization included (D).
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There have been two important facts omitted in the previous paragraph: different effective lengths
present and several hits counts (e.g. the dominant configuration has 4 hits at one arm and 2 at the other).
It would be complicated to incorporate those two effects in the analytic calculation and that is why we
rather performed a simple MC simulation. The results are shown in Fig. 10. Plot A corresponds to the
approximation of the previous paragraph. Plot B was obtained for realistic Li values and for 2 + 2 and
4 + 2 hit configurations. Eventually, we added the effect of partial (strip-)discretization of y values and
the plot C was obtained. This plot well reproduces Fig. 9. However, note the secondary structure with
half pitch of the main peaks in the MC plot. This is probably due to other effects not included to the MC
simulation.

As the last comment, let’s address the detector shifts. Displacing horizontal detectors would change
only the constant terms in Eqs. (10) and (12) and thus the entire peak structure would just move. The
same effect takes place if top and bottom vertical pots are shifted simultaneously. But if they are moved
independently, the whole picture changes. We stop this discussion here as it is not the primary goal of
this article.

7. Performance at �∗
= 90 m optics

Relevant parameters of this optics are summarized in Tab. 1. Immediately, one can see this optics has
very low effective lengths Lx, which requires a special treatment. First, the selection algorithm is not
intended for such a case and therefore the x road size should be set to a large number in order to let
everything pass (the two dimensional road search is, then, reduced to one dimension). Similarly, this is
the reason for bad ϑx reconstruction performance. Thus no constraints should be imposed on ϑx (this
is equivalent to very large tolerance parameter).

As for 1540 m optics, we generated 104 elastic events (2.5 · 10−2 GeV2 < |t| < 1.5 GeV2), with and
without smearing. The y road size was fixed at 50 µrad (the ∆/L estimate) and no vertex cuts (high
vertex tolerances) were used for both cases.

7.1. Case without beam smearing

The last parameter which has not been discussed yet, is ϑy tolerance. For this section it was set to
6 · 10−7. It is a very liberal cut which removes only pathological events.
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Figure 11: Angular resolution for 90 m optics without smearing.
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The angular resolution is shown in Fig. 11. The ϑx precision is very bad, as expected. Relative error
of ty reconstruction, shown in Fig. 12, was fitted by Eq. (A.13). The fit gives A = 7.1 · 10−4 GeV, while
analytic estimation yields A = 5.3 · 10−4 GeV for N = 4, which is the dominant configuration. The
analytical uncertainty is apparently slightly underestimated.

Fig. 13 shows vertex reconstruction potential. As magnifications vy are low for this optics, precision
of y∗ reconstruction is poor.

Important statistical properties of the fits can be seen in Fig. 14. The left-hand side plot shows that
most events include 4 hits, i.e. 2 degrees of freedom. The right-hand plot shows residual sum of squares
for events with 2 degrees of freedom. The histogram is compared to χ2(ν = 2) distribution drawn in
red. The histogram is quite close to the desired distribution. Fig. 15 presents a histogram of ϑy error
divided by fit uncertainty. Ideally (if included error sources were Gaussian-like), the histogram should
form a Gaussian with RMS one. But since strip-rounding error behaves rather like δx in Eq. (A.4), one
need not be surprised that the histogram deviates from Gaussian shape.

Tab. 4 summarizes numbers of rejected events. There is evidently high number of empty events.
But again, this can be explained geometrically. In principle, one might follow the same prescription
as for 1540 m optics. However, here one should consider relatively high lower bound of simulated
events: 2.5 · 10−2 < |t|. Then, the calculation gets complicated. We performed a MC simulation
instead, yielding 53 % probability of empty event. This corresponds well to the observed frequencies.
As Lx ≈ 0, horizontal RPs are not involved in elastic events and there is no geometrical reason for
insufficient events. Those 103 events correspond to problematic events, for instance when proton was
registered at one arm only etc.
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Figure 13: Vertex resolution.
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Figure 14: Some statistical properties of the y fit. Left: number of degrees of freedom distribution. Right: Histogram of normalized
residual sums for events with 2 degrees of freedom. Red curve represents theoretical χ2 distribution.
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Figure 15: Histogram of ϑy deviation divided by fit uncertainty.

fully empty insufficient inconsistent

reconstructed events events x∗ y∗ ϑx ϑy

without smearing 4495 5350 103 0 0 0 52

with smearing 4228 5120 605 0 9 0 38

Table 4: Efficiency of the algorithm (sample of 104 events). For legend see Tab. 3.

7.2. Case with beam smearing

The analysis was repeated for simulation with smearing applied (smearing parameters are to be found
in Tab. 2). The ϑy tolerance had to be increased because of the beam divergence. The value used was
8 · 10−6 rad (compare with left plot of Fig. 18).

Interesting angular and vertex reconstruction results are shown in Fig. 16. Relative errors of t
components are plotted in Fig. 17. All of them follow the A/

√

ty rule. But as tx measurement introduces

a significant error, only ty is of practical use. The of ty resolution gives A = 1.7 · 10−2, just as estimate
by Eq. (A.13).
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Figure 16: Angular and vertex resolution for 90 m optics with smearing.
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Figure 18: Right-left differences in ϑy and x∗ fits.
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Finally, right-left difference plots are shown in Fig. 18. The sigma of ϑy difference histogram well
corresponds to beam divergence variance. Also the peaks are present. We carried out a MC simulation
like for the previous optics, but this time the outcome did not fit that well to the data. The major peaks
in the simulation are twice closer than the major peaks in data. In fact, this observation is similar to the
case of 1540 m optics. The peaks with half pitch were also present (see Fig. 10D) but were suppressed in
comparison with the principal peaks. The reason is, probably, the simple MC is missing some relevant
effects and subtleties (which can have only smearing impact).

Looking at Tab. 4 one can see that number of insufficient events rose drastically after inclusion of
smearing effects. Those events take place mainly in the region of detector edges and hence it suggest
a straight-forward explanation: outgoing protons have slightly different direction due to the beam
divergence and it happens that only one proton hits detectors.

8. Discussion

It would be definitely worth testing the performance of the algorithm on a sample of background or
background plus elastic events. Unfortunately, only one-arm background simulations are currently
available. No surprise that all those events are rejected.

There is one issue already known. Let’s imagine a situation when a proton interacts in/after 214 m
unit. Indeed, it gets deflected and if it reaches further detectors, the information is misleading. In such
a case one should omit information from affected RPs. That should be done on the level of selection,
but unfortunately the present road search algorithm is not sensitive enough. Fortunately, those events
are rather rare.

Appendix A. Estimation of t measurement error

In order to cross-check performance of the reconstruction method, it is desirable to estimate reconstruc-
tion error. In this appendix, I will express contribution of two main error sources, i.e. beam divergence
and finite pitch of detectors.

To keep the calculation smooth, I adopted the assumptions below. Many of those are not precisely
fulfilled, but the error caused by them is not dramatic for the purpose of error estimate.

1) The optics is symmetric, therefore the v-terms in track parameterization (see Eq. (2)) cancel out.

2) Absolute values of |Lx| for all RPs do not differ drastically 6) and can be well approximated by ±Lx.
The + sign holds for RPs at right arm and vice versa. The same assumption for Ly.

3) Uncertainties in hit position measurements are identical for all RPs.

4) There are N measurements in total, N/2 for each arm.

Under these assumptions, the fit equation (Eq. (3)) can be simplified to

ϑ′
x =

1

N Lx





∑

right

xi −
∑

left

xi



 . (A.1)

From now on, symbols with prime will be related to measured values while prime-less symbols will
refer to the true or unsmeared value.

If there were no errors and smearings, xi would be given by parameterization Eq. (2). But as those
are present, one needs to generalize the dependence. Since we assume symmetric optics, we may drop
out the v-term and write down

xi = Lxϑsmearedx +∆xi . (A.2)

We replaced ϑx by its smeared value and added a term which describes discretization to the given pitch.
It is natural to assume that ∆xi follows uniform distribution U(−P/2, P/2), where P stands for the

6) For instance, for 1540 m optics Lx ranges from 99 to 113 m and Ly from 248 to 272 m. Therefore, the approximation of
unique effective length brings error of roughly 10 %.
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detector pitch. For completeness, σ∆x = P/
√
12. Later on, we will also assume ∆xi to be independent

for different RPs.
In note [2] an analysis of angular smearing has been carried out for particles scattered to small angles

(i.e. particles that can be detected by Roman Pots). It shows that the effect of smearing is equivalent to
modification of particles’ direction (see Eq. (16) in [2])

ϑx ≡ ϑ cosϕ → ϑ cosϕ+∆ϑL,R
x

ϑy ≡ ϑ sinϕ → ϑ sinϕ+∆ϑL,R
y

, (A.3)

where the standard notation is followed: ϑ denotes scattering angle and ϕ is azimuthal angle. By the
L, R superscript we want to emphasize that the shift has different values for particles at left and right
arm.

Inserting Eqs. (A.2) and (A.3) to Eq. (A.1) yields

ϑ′
x = ϑx + δϑx +

1

Lx
δx, δϑx =

∆ϑR
x +∆ϑL

x

2
, δx =

1

N





N/2
∑

right

∆xi −
N/2
∑

left

∆xi



 (A.4)

Clearly, mean values of both δϑx and δx are zero. Following Eq. (17) 7) in [2] one obtains σδϑx
= σϑ/2,

where σϑ denotes sigma of beam divergence. And finally, σδx = P/
√
12N .

Taking into account definitions (t, tx and ty are considered as positive here)

t = p2ϑ2, tx = t cos2 ϕ, ty = t sin2 ϕ, (A.5)

Eq. (A.4) can be rewritten in terms of t components:

t′x = t cos2 ϕ+ p2δ2ϑx +
p2

L2x
δx2 + 2p

√
t cosϕ

(

δϑx +
1

Lx
δx

)

. (A.6)

The relation for t′y can be obtained by swapping x ↔ y and cosϕ ↔ sinϕ.

One can easily calculate mean value of t′x while keeping tx fixed (all terms linear in perturbations
drop out because of their zero mean values):

〈

t′x
〉

= tx + p2

(

σ2ϑ
4
+

P 2

12N L2x

)

. (A.7)

Similarly, mean value of t′ when t is fixed reads

〈

t′
〉

= t+ p2

(

σ2ϑ
2
+

P 2

12N L2x
+

P 2

12N L2y

)

. (A.8)

In order to evaluate σt′
x

, we need to calculate
〈

t′2x
〉

. It is evident that terms linear in δϑx and δx will
not contribute. Also, to keep the calculation simple, terms higher than quadratic were not included.

t′2x = t2x + 6p
2tx

(

δ2ϑx +
1

L2x
δ2x

)

+ . . . (A.9)

And analogically

t′2 = t2 + 2p2t

[

(1 + 2 cos2 ϕ)

(

δ2ϑx +
1

L2x
δ2x

)

+ (1 + 2 sin2 ϕ)

(

δ2ϑy +
1

L2y
δ2y

)]

+ . . . (A.10)

7) All the simulations in this note were performed using the smearing parameterization (7) in [2].
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It is straight-forward to show that

σ2t′
x

≡
〈

t′2x

〉

−
〈

t′x
〉2
= 4p2tx

(

σ2ϑ
4
+

P 2

12N L2x

)

for fixed tx , (A.11)

σ2t′ ≡
〈

t′2
〉

−
〈

t′
〉2
= 4p2t

[

σ2ϑ
4
+

P 2

24N

(

1

L2x
+
1

L2y

)]

for fixed t . (A.12)

The relative resolution, then, gains the commonly used A/
√

t form:

σt′
x

tx
=

A√
tx

, A = 2p

√

σ2ϑ
4
+

P 2

12N L2x
, (A.13)

σt′

t
=

A√
t
, A = 2p

√

√

√

√

σ2ϑ
4
+

P 2

24N

(

1

L2x
+
1

L2y

)

(A.14)
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