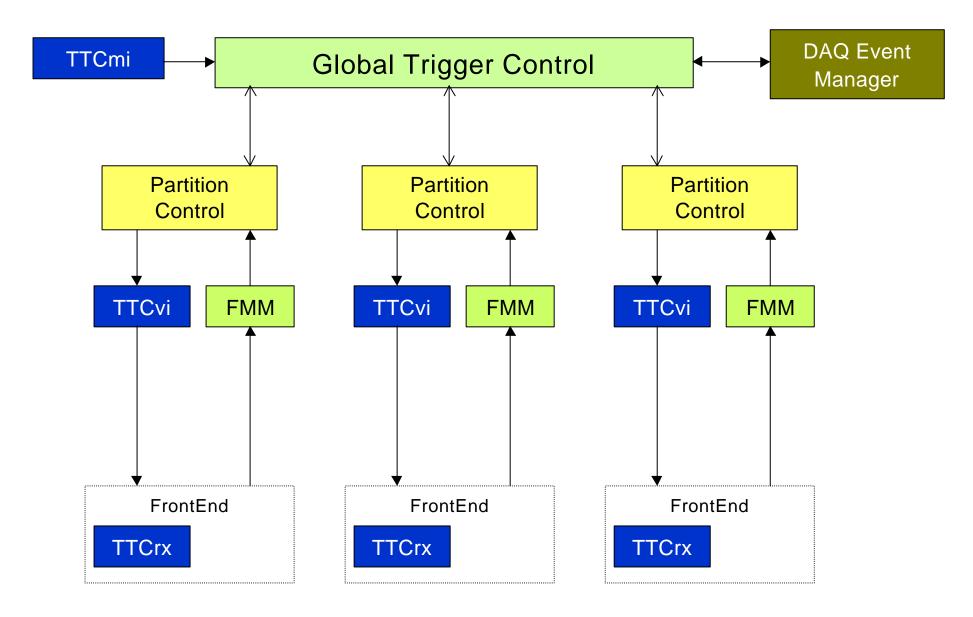
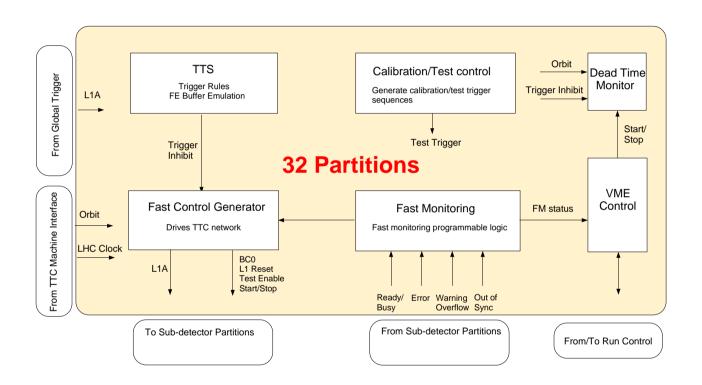


TTC in CMS


João Varela

LIP-Lisbon & CERN


CERN, 29 June 2001

TTC Workshop

Trigger Control Architecture

Multi-Partition Trigger Control

Allows Subdetector Partitions or Partition-Groups to run independently with complete functionality

Provides independent calibration or physics triggers to different Partition-Groups

In normal data taking all subsystems are included in one group

Reconfiguration achieved by software programming

Subdetector TTC partitions

TTC distribution system:

Two-time division multiplexed channelsOptical passive networkChannel A: L1A signalChannel B: Fast commands(40 Mbit/s)

Sub-detectors TTC master crate:

TTCvi module: gets L1A and B-Go signals;VME interface (programming of cmds)TTCex module: encoder and transmitter

Fast Control Signals

Level 1 Accept (L1A)

- Transmitted every trigger (TTC Channel A)
- Event Identifier: Event Number, Bunch Number, Orbit Number, Trigger Type

Bunch Crossing Zero (BC0)

- Periodic command synchronous to LHC Orbit signal (~ 11 kHz)
- Synchronization of trigger data, Bunch Counter Reset

Fast Reset

- L1 Reset: Re-synchronization of event ID and readout buffers
- Hard Reset: Partial reset of readout electronics

Calibration and Test Modes

1) Sub-detectors in standalone mode:

Test and calibration sequences are generated locally

Data is captured with the sub-detector DAQ

2) Sub-detectors in DAQ partition mode:

Trigger Control sends test and calibration triggers to a partition-group

Data is collected by the central DAQ

3) Periodic test and calibration triggers during a Physics Run:

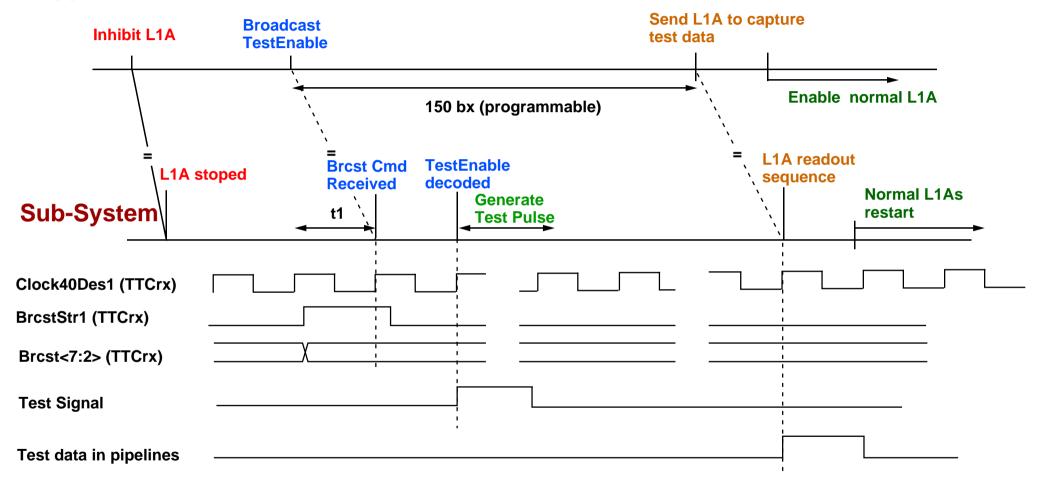
Test triggers sequences are issued centrally and distributed to all partitions

Calibration/test triggers are issued at pre-programmed cycles in the LHC orbit

Data is collected by the central DAQ

4) Local test and calibration triggers during a Physics Run:

The sub-systems perform test, calibration or monitoring activities during Private Gaps and Private Orbits


Calibration Control Signals

Fast Control Signal	TTC Command Type	Comments
Test Enable	Channel-B Broadcast	Broadcast command sent a fixed time before a test or calibration trigger.
Private Gap	Channel-B Broadcast	Broadcast command marking the next Gap for private use by the sub-detectors
Private Orbit	Channel-B Broadcast	Broadcast command marking the next Orbit for private use by the sub-detectors

Calibration Request Signal: sub-detectors may use the Fast Monitoring system to send Calibration Request signals.

Test/Calibration Sequence

Trigger Control

t1 = delay on TestEnable command; adjusted in subdetector TTCvi's

Fast Monitoring Signals

Signals received from Sub-detector Partitions and DAQ Event Manager

Ready The Partition is ready to receive triggers		
	Allow L1As	
Busy		
The Partition is not ready to take data and can	't accept L1A's	HARDWARE
	Inhibit L1As	SIGNALS
Warning Overflow		
The Partition buffers are close to overflow and	L1A rate should be re	duced
	Reduce L1As	
Out of Sync		
Loss of synchronization in readout or trigger Pa	artition	
	L1 Reset	FAST
• Error		MESSAGES
The Partition is in error and needs a reset		
	Hard Reset	

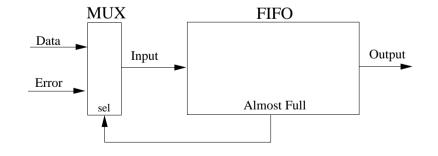
Trigger Throttling

Front-end buffers may overflow due to statistic fluctuations in trigger rate and event size.

Front-End Buffers Emulation

Front-end pipeline-derandomizers are emulated centrally L1 trigger is inhibited if an overflow condition is detected

Trigger Rules


No more than n L1A per X ns (dead time less than 1%)

Fast Monitoring

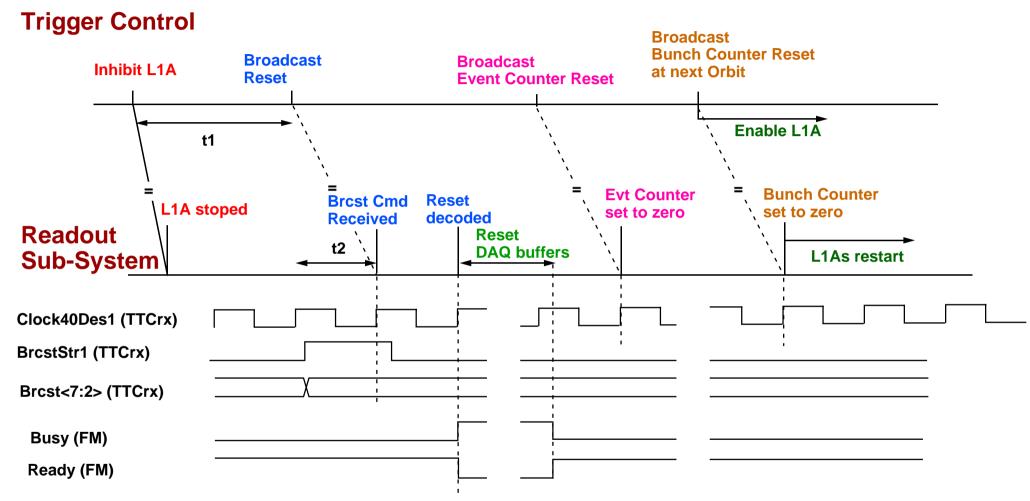
Fast feedback signal Warning Overflow

Local Buffer Monitoring

Above buffer warning level store 'empty events'

Synchronization Losses

Identification of Sync Loss conditions that will require a L1 Reset:


in readout systems

- buffer overflow
- mismatch between event ID's at any level of data concentration (FED, DCC, RU)
- mismatch between number of events received and number of L1A received
- mismatch between internal BC counter content and BC0 command (checked every orbit)

in trigger systems

mismatch between internal BC counter content and BC0 command (checked every orbit)

Fast Reset Sequence

t1 = time needed to empty DAQ buffers in subsystems

t2 = time needed to transmit a broadcast command to subsystems

Project Status

- Conceptual design is being finalized

 Interfaces and functional specs of Trigger Control ready up to end 2001

- Detailed engineering design will start in 2002

Functionality of TTCrx

- Functionality of TTCrx is well adapted to CMS architecture
- Clock jitter 150 ps p/p is a point of concern when used as master clock for high speed serial links
- CMS favors a re-design in submicron technology
- CMS prefers a TQFP packaging

Functionality of TTCvi

General comments

Present TTCvi seems well adapted to small test systems

Functionality of final TTCvi should not be frozen now

CMS prefers to wait one year for a better understanding of the overall architecture and for more practical experience with test systems

Preliminary detailed comments on TTCvi

B-Channel

- Addition of **12 external B-Go signals** to the present 4, allowing 16 different command types. Each new channel is associated to a single 8-bit register were a short-format broadcast command code can be stored.
- **Priority scheme not needed.** Timing of B-commands is externally controlled (B-commands are not allowed to overlap) in order to guarantee synchronicity of B-channel.
- **Programmable B-Go delay** between external B-Go signal and actual command transmission is needed.
- **Prescaling factor on B-Go channels,** such that in synchronous repetitive mode a pre-loaded command is transmitted every N orbits.

Internal Generation of L1A

Generation of **L1A synchronous with the Orbit** signal (at programmable bunch crossing number). Associated with this feature a Delay and a Prescaling factor should be defined.

Transmission of Trigger Type

Addition of the possibility of transmitting after L1A, through B-channel, **the Trigger Type only** (The present TTCvi version has an option that allows to transmit after L1A the Trigger Type **and** the Event Number).

Input Levels

TTL and LVDS levels are more suitable than the present NIM and ECL levels

Preliminary CMS TTC Numbers

SUB-SYSTEM		TTCrx	Optical C	ouplers and	TTCv	∕i/TTCex
			fibers			
	Quantity	Schedule	Optical Splitting 1:N	Fiber length	Quantity	Schedule
Pixels	100	2001 - 10 for R&D 2002 - 10 for R&D 2003 - 10 for R&D 2004 - 70 for production	1 x 1:24	10-20 m	5	2 in 2002 2 in 2004 1 in 2006
Tracker	610	2002 - 50 2003 - 50 2004 - 510		10-20 m	Not yet known	Not yet known
ECAL	1450	July 2001 5 pcs; Jan. 2002 25 pcs; Dec. 2002 50 pcs; 2003 1370 pcs.		10-20 m	8	2001 1pc; 2002 1 pc; 2003 2 pcs; 2004 4 pcs
Preshower	140	2001 few pieces; 2002 few 10s; 2003-2004 rest		10-20 m	5	2001 1 pc; 2002 1 pc; 2003-2004 3 pcs.
HCAL	1093	50 chips and 15 TTCRx test boards now 2Q 2002 - 1028	1:18 or 1:36 for	~90 m		
DT	400	2001 - 10 early 2002 - the rest		~90 m	5	2001 - 2 2002 - 1
csc	100	2001 - 15 pcs		~90 m	3	
RPC	2710	2001 - 20 2002 - 1000 2003 - 1000 2004 - 690	77 optical	~90 m	2 TTCvi 2 TTCex 6 TTCtx	2002
TRIGGER/DAQ	250	2002 - 100 2003 - 150		10-20 m	11	
TOTAL	6850	2001 - 130 2002 - 2770 2003 - 2680 2004 - 1270			>32	

Experience with TTC System in CMS

SUB-SYSTEM	Prototypes with TTCrx	TTC systems installed	TTC systems in test beam
Pixels	1	0	0
Tracker	2	5	1
ECAL	2	1	0
Preshower	0	0	0
HCAL			
DT	0	1	0
csc	1	1	0
RPC	3	1	1

CONCLUSIONS

- TTC system is extensively used by CMS
- Functionality of TTCrx is well adapted to CMS architecture
- CMS needs about 7000 TTCrx

- CMS prefers to wait one year to define the final specification of TTCvi