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Abstract

This paper1 presents a method of obtaining of explicit
forms for Lie transformations which are widely used in par-
ticle physics problems. This approach is based on the ma-
trix formalism for Lie algebraic tools. All calculations are
realized in symbolic form with the help of computer alge-
bra codes (REDUCEorMAPLEcodes). The closed form of
Lie transformations takes into account the intrinsic proper-
ties of the Lie transformations, for example, the property of
symplecticity for Hamiltonian systems. The module which
creates these closed forms for nonlinear systems is one of
parts of a protype of an expert system which is created for
beam line systems simulating.

1 BASIC DEFINITIONS AND
EQUATIONS

1.1 Introduction

Beam line systems are usually described by nonlinear mo-
tion equations. The corresponding maps – Lie transforma-
tions – can be calculated with the help of so called Lie al-
gebraic tools (for Hamiltonian systems see [1]). Usually
Taylor expansions of these maps are used. However in this
case we encounter with two problems. One is the loss of
calculation accuracy and the other is the quality properties
loss. The purpose of this paper is to present a new approach
to evaluation of explicit forms for Lie transformations. This
approach has the advantage that it is based on linear algebra
algorithms, which are very well developed.

1.2 The matrix formalism

Further we will consider differential equations of motion in
the general form

dX

dt
= F (X; t); (1)

where the functionF (X; t) can be represented as a Taylor
expansion and we can write

dX

dt
=

1X
k=0

P
1k(t)X [k]: (2)

Here X [k] = X 
 : : :
X| {z }
k�times

is the so called Kronecker

power ofk-order for a phase vectorX = fx1; : : : ; xng,
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P
1k(t) are matrices containing Taylor expansion coeffi-

cients. The solution of the Eq.(2) can be written in the form

X(t) = X(X0; tjt0) =

1X
k=0

M
1k
(tjt0)X

[k]
0 ; (3)

whereX0 = X(t0) is an initial phase vector andM1k(tjt0)
are solution matrices. In the previous papers (f.e. see
[2, 3, 4, 5]) basic features of this approach were demon-
strated and different examples of applications were de-
scribed. According to this approach for calculation the ma-
tricesM1k we use the matrix formalism for Lie algebraic
methods. Following to these tools we use Lie maps repre-
sentation for solution of the Eqs.(1)-(2):

X(t) =M(tjt0) �X0 = Texp fLF g �X0; (4)

whereLF is a Lie operator associated with the function
F (LF = F �(X0; t)@=@X0), Texp is the so called T-
exponential operator (time ordered exponential operator).
For non-autonomous cases this operator can be rewritten
with the help of the Magnus’s representation [6] in the form
of routine exponential operator

Texp fLF g = exp

n
L̂(F ; tjt0)

o
: (5)

The new operatorL̂ is associated with a new function
F̂ (F ; tjt0) which one can calculated using the continuous
analogue of the CBH formula. The expansion (2) gener-
ates Taylor expansions of Lie operatorsLF =

P
k�0 LFk

andL̂F =
P

k�0 LF̂k . HereFk andF̂k are homogeneous

vector polynomial functions, f.e.Fk = P1kX
[k]. The se-

quences offFkg and
n
F̂k

o
are defined by the following

matricesP1k(t) andP̂1k(tjt0). Rewrite the Eqs.(4)-(5) us-
ing the analogue of the Dragt-Finn factorization in the form

M(tjt0) = : : : exp
n
~L3

o
� exp

n
~L2

o
� exp

n
~L1

o
; (6)

where ~Lk =
�
G

1kX [k]
��
@=@X . For new matrices

G
1k(F ; tjt0) were obtained the rather simple formulas us-

ing the Kronecker product and sum representations. Inter-
acting by the factorized maps (6) onX0 we evaluate the
solution (3). The matricesM1k can be written in closed
forms as functions ofG1k.



2 THE EXPLICIT SOLUTIONS

2.1 The general features

It is known that the approach mentioned above is one of
the perturbation theory methods. The desired solution is
created in the form of power series (see the Eq.(1)). It is
clear that way can be realized only with truncated proce-
dures for some chosen order of expansions. In the referred
works the corresponding matricesP1k, P̂1k ,G1k andM1k

are calculated up to fifth order in symbolic forms using the
computer algebra codes (REDUCE for example). But we
have to note that for this approach there appear two prob-
lems:support of accuracy of truncated expansionsandsup-
port of intrinsic properties (f.e. symplecticity for Hamilto-
nian systems). The second problem can be solved with the
help of the correction procedure [7] for the matricesM1k.
For this correction we have to solve a chain of linear al-
gebraic equations and redefined some of the elements of
M

1k. These calculations one can make in symbolic forms
too. But for many applications (f.e. for long time track-
ing) it is very important to have solutions in explicit forms.
These explicit forms can be used in two ways: for more
accurate tracking of particles beams and for checking of
approximate calculations.

2.2 The solution method

For the creation of explicit forms for Lie transformations
M we use the matrix representation (3). At first we repre-
sent the designed solutionX(X0; tjt0) in the form

X(X0; tjt0) =
W (X0; tjt0)

v(X0; tjt0)
; (7)

where W (X0; tjt0) and v(X0; tjt0)

are analytical functions,W =
P

k�0W
1k(tjt0)X

[k]
0 and

v =
P1

k=0

�
V 1k(tjt0)

��
X

[k]
0 , whereW1k, V 1k are ma-

trices and vectors of coefficients which must be calculated.
Using the representation (3) and (7) we can write 

1X
l=0

�
V 1l
��
X

[l]
0

!
�

 
1X
k=0

M
1kX

[k]
0

!
=

1X
j=0

W
1jX

[j]
0 :

This expression can be rewritten using the Kronecker prod-
uct properties in the form

1X
l=0

 
lX

k=0

�
V 1k

��

M1 l�k

!
X

[l]
0 =

1X
j=0

W
1jX

[j]
0 : (8)

In the Eq.(8) the matricesM1j have to be defined or calcu-
lated from the initial motion equations (see the Eqs.(1)-(2)).
Obviously that the system of linear algebraic equations (8)
does not define unknown matrices and vectorsW1k and
V 1j in a full measure. We have an arbitrariness which can
be removed by superposition of additional conditions. As
such conditions the symmetries conditions on the initial dy-
namic system can be suggested.

3 ORGANIZATION OF CALCULATIONS

3.1 The general case

Following to the approach described in the referred pa-
pers the calculation procedures is realized using some data-
bases of corresponding matrices and formulas for abstract
(noncommutative) variables [8]. The prepared formulas
are used for necessary calculations for obtaining of explicit
forms of solutions in the following ways: at first we impose
some conditions onP1k matrices included to the series in
the Eq.(2). Then according to the matrix formalism we use
necessary formulas for the solution matricesM1j and solve
the Eqs.(8). The block structure of matricesP1k andM1j

correspondingly helps to do all calculations more comfort-
able.

3.2 Some simple examples

At first let give as an example the matrix representation for
the Lie transformation associated with homogeneous poly-
nomialsGm = GmX

[m]:

exp fLGmg �X =

=

1X
k=0

kY
j=0

G
�((j�1)(m�1)+1)
m

k!
X [k(m�1)+1]: (9)

HereG�k denotes thek-multiple Kronecker sum. In
works [9, 10] some approach to the problems of explicit so-
lutions for Hamiltonian systems is discussed. In this paper
we suggest an alternative method which is usefulness for
more general dynamics systems. Besides, we can use for
solving corresponding equations computer algebra meth-
ods and codes. Also we can create some specialized data–
bases which can help to generate necessary explicit solu-
tions more flexible and effective. Consider a homogeneous
polynomial of second orderG2(X) = G2X

[2] for simple
case ofn = 2, where

G2 =

�
a 0 0

b �2a 0

�
;

where a and b are arbitrary constants. We pro-
pose that the desired solution has the following formPm

k=0W
1kX [k]=

Pn

l=0

�
V 1l
��
X [l]. Solving the Eq.(7)

we obtain the following solution matricesW1l and vectors
V 1k for l = 0 : : : 4, k = 0 : : : 1

W
10 = 0; W11 = E;

W
12 =

�
0 0 0

�b 3a 0

�
; W13 =

�
0 0 0 0

�b 3a 0 0

�
;

W
14 =

�
0 0 0 0 0

�b 3a 0 0 0

�
; (10)

V 10 = 0; V 11 = a �

�
1

0

�
: (11)



It is not difficult to see that the corresponding expression
for exp fLG2

g �X (with regard to the Eqs. (3),(4),(7),(10)
and (11) ) is the same as expressions in [10] (up to nota-
tions) for a Hamiltonian system with a cubic term in the
form H3 = �bx3=3 + ax2p, wherex, p are components
of the phase vector forn = 2. A similar expression ( up to
permutation of lines in the matricesW1k and vectorsV 1l

and changing the constanta to a new constantc) can be
obtained for a polynomialH3 = �axp2 + cp3=3.

In conclusion I would like to point some moments. In
the first place, the suggested method is based on the unique
mathematical tools which are used in the frame of the ma-
trix formalism. Secondly, this approach allows data-bases
of necessary matrices to be created for advance. And fi-
nally, it is possible to use computer algebra methods and
codes for all necessary calculations. Ultimately this pro-
vides a possibility of creation of a prototype of expert sys-
tems for particle beam lines modelling and optimization.
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