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ABSTRACT

Beam optics in the extraction system of the ECR ion
source is examined both analytically and numerically, by
taking nonlinear effects due to aberration of einzel lens
and space charge forces of the beam into account. Simple
criteria has been derived to estimate the significance of
nonlinear effects on beam emittance distortion.
Maximum transported beam current and value of
acceptance of the channel were estimated.

1 INTRODUCTION
New RIKEN low energy beam transport line

between  18GHz ECR ion source and RFQ linac [1]
consists of einzel lens, bending magnet and solenoid coil
(see fig. 1). Parameters of  the structure are listed in
Table 1. Beam dynamics study was done to analyze
nonlinear effects of space charge and focusing field of
einzel lens on beam parameters and to suggest possible
ways to improve beam quality through the beam line.

Table 1. Parameters of beam transport line

Maximum ion magnetic rigidity                     76 kGs cm
Extraction voltage                                            8....10 kV
Einzel lens voltage                                          10.....13 kV
Maximum magnetic field in dipole                 1.6 kGs
Maximum magnetic field in solenoid              6.3 kGs

2  LINEAR BEAM OPTICS: MAXIMUM
BEAM CURRENT AND ACCEPTANCE OF

THE CHANNEL
Intensity of the transported beam in the considered

beamline is limited by dipole gap and solenoid aperture
which have the same value of Rmax = 3.5 cm. Evolution
of beam radius in drift space in the case of linear space
charge forces is described by KV (Kapchinsky-
Vladimirsky) equation
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where E is a beam emittance; P  = 2I/(Io β3 γ3)  is a
space charge parameter, I is a beam current and
Io = 4πεo mc3/q is a characteristic value of current.
Equation (1) has an approximate solution for R'o = 0:

R
Ro

 = 1 + 0.5 z2 (E2

Ro
4

 + P2

Ro
2
)  .                         (2)

    

Einzel Lens

Dipole
RFQ

ECRIS

Solenoid

2L

L

Fig. 1. Layout of extraction beamline of 18 GHz ECR ion
source.
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Fig. 2. Acceptance of the channel A as a function of space

charge parameter of the beam P  = 2I/(Io β3 γ3) .

From symmetry point of view it is clear, that beam has a
minimum size Ro (waist) in the middle point z=L=110
cm between dipole and solenoid. Suppose, the value of P
is fixed. Differentiation ∂E2/∂Ro=0 gives the following
expressions for optimal relation Ro(Rmax) and maximum
emittance of the beam (acceptance of the channel A):
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In fig. 2 the dependence of channel acceptance against
space charge parameter of the beam P is represented.
From eqs. (3), (4) it follows, that the maximum value of



space charge parameter is Pmax = 0.0215. Combining
expression for parameter P and beam velocity β as a
function of extraction voltage Uext , t h e maximum
transported beam current is

Imax = Io 2  Pmax
2  Z

A
 ( e Uext

mpc2
 )

3/2
  ,                 (5)

where mpc2/q =938.3 MV is a proton rest energy.

 3 BEAM ABERRATIONS IN AXIAL-
SYMMETRIC LENS

After being extracted from ECRIS, particles pass
through the focusing lens. In thin lens approximation, the
nonlinear transformation from old variables (xo, x'o) to
new variables (x, x') after crossing the lens is described
by focal length of the lens f as well as spherical aberration
coefficient C [2]:
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Suppose, initial (unperturbed) beam emittance has a value
E and is described by ellipse:
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where R is a beam radius. After lens the shape of beam
emittance is deformed as follows:
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Let us introduce action-angle variables I, ϕ  instead of x,
x':

x
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 = I  cos ϕ;        (x' + x
f
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In new variables the shape of beam emittance at phase
plane is as follow:

I + I2 2δ sinϕ cos3ϕ + I3 δ2 cos6ϕ = 1 ;                (11)
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Without nonlinear perturbation δ=0 equation (11)
describes ellipse in phase space. If δ≠0, equation (11)
describes S-shape figure of beam emittance, which is
typical for nonlinear aberration. It is easy to verify by
numerical integration , that phase space area, enclosed by
the curve (11) , is conserved for any value of δ:
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Fig. 3. Distortion of beam emittance shape due to
aberration in einzel lens with parameter δ =1.5: numerical
modeling (left) and calculated from formula (11).
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Fig. 4. Emittance growth due to aberration in einzel lens
as a function of parameter δ, calculated from formulas
(11), (14).

Nevertheless, the effective area, occupied by the beam, is
increased. Let us denote the value of effective beam
emittance as square of product of min and max values of
action variable:

Eeff = Imax Imin   .                               (14)

Values  Imax, Imin are found numerically from eq. (11).
At fig. 4 the dependence of emittance growth as a
function of parameter δ is presented. Dependence can be
approximated by parabola:

Eeff

E
 = 1 + K δ2   ,                           (15)

where parameter K≈0.16. Numerical calculations indicate
that growth of the  rms beam  emittance



Erms = 4 <x2> <x'2> - <xx'>2                       (16)

has the same dependence as δ2 with coefficient
K=0.08...0.5 for different beam distributions. Above
analysis shows, that to prevent substantial emittance
distortion, the parameter δ should be limited δ< 0.8.

4  BEAM EMITTANCE GROWTH IN
DRIFT SPACE

Beam emittance is affected by self nonlinear space
charge forces as well. Let us consider a cylindrically-
symmetric beam in drift space with initial Gaussian
distribution:
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π R2 βc

 exp(-2 ro
2

R2
)  .              (17)

For space charge dominated beam a single particle
trajectory is described by equation [3]:
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where function f(ro) depends only on initial conditions:
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Taking only two lowest order terms in function f(ro), the
approximate solution of the problem is given by
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2ro

R2
 (1 - ro

2

R2
) + z ( d r

d z
)o  .               (20)

From eq.(20) it follows, that radius of particle increases
as z2, while the slope of trajectory is proportional to z. At
the initial stage of beam emittance growth we can assume
, that particle radius is unchanged, while the slope of the
trajectory is changed. It gives the nonlinear
transformation,  similar to (6), (7):
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(21)
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Transformation (21),(22) results in the same equation for
distorted beam emittance shape as (11). The difference is
that the axial-symmetric lens provides focusing, while
space charge forces of the beam are always defocusing. It
creates different orientation of distorted phase space
ellipse at the phase plane. The parameter δ for nonlinear
space charge problem is

δ = 4 z
E

 I
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  .                                (23)
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Fig. 5. Emittance growth of the beam with A/Z=5, β =1.9
10-3,  E= 1.5 π cm mrad for different values of initial
beam radius: a) R = 2cm; b) R = 1cm; c) R = 0.5 cm.

Once the equation (11) is the same for both cases, the
dependence of beam emittance growth rate on parameter
δ should be the same. Numerical analysis shows, that for
Gaussian beam initial growth of rms beam emittance can
be approximated by formula:

Erms

E
 = 1 + 0.014 δ2   .                            (24)

As follows from (23), (24), initial emittance growth does
not depend on  initial beam radius R. In fig. 5 results of
beam emittance growth for different values of initial
beam radius are presented. The quadratic dependence of
beam emittance growth on distance z is clear while
dependence on initial beam radius is negligible.

5  CONCLUSIONS
Nonlinear effects associated with beam emittance

distortion in low energy beam transport line were
analyzed. Two important phenomena: effect of spherical
aberrations in axial  -symmetric focusing lens and
influence of nonlinear space charge forces on beam
emittance growth were analyzed both analytically and
numerically. Nonlinear mapping describes the distortion
of beam emittance shape in phase plane. Simple
analytical criteria has been derived to estimate importance
of beam parameters as well as lens parameters on beam
emittance growth.
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