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Abstract

General formulae are given for computing the normal mode
incoherent and coherent Laslett coefficients for beam liners
surrounded by a (coaxial) magnetic yoke, in terms of com-
plex potentials. Applications to the circular and square ge-
ometries are discussed.

1 INTRODUCTION

In a previous paper one of the Authors (S.P.) has shown that
vertical and radial betatron oscillations are coupled in gen-
eral, so that Laslett coefficients [1] form a non-diagonal ten-
sor. It is thus possible to compare different pipe geome-
tries in terms of Laslett coefficients in a meaningful and
non-ambiguous way only after introducing betatron normal
modes [2]. In this communication the normal mode Laslett
coefficient computational framework formulated in [2] is
extended to the more general case where the beam pipe is
encircled by a magnetic yoke.

2 THEORY

The transverse motion of a particle in a beam is driven by
space-charge, image and guiding forces:

~f = ~f (sp:ch:) + ~f (im:) + ~f (g:f:) : (1)

The space charge force ~f (sp:ch:), related to the beam charge
distribution [3], is the same as in free space, and will be ne-
glected here, for simplicity. The image force ~f (im:), is due
to the conductingand magnetic boundaries, and is computed
as if the beam were a line charge through the (transverse)
center of charge ~�b. The equilibrium condition is defined
by1:

~f (g:f:)j~�=~�eq: +
~f (im:)

j~�=~�b=~�eq: = 0: (2)

For small displacements, thereof two regimes are possible:

i) ~�b = ~�eq:; ~� 6=~�eq:, incoherent, single particle regime:

~f = (~� � ~�eq:) � r~�

h
~f (im:)+ ~f (g:f:)

i
; (3)

ii) ~� = ~�b 6=~�eq:, coherent, whole beam regime:

~f=(~��~�eq:)�
h
(r~�+r~�b )

~f (im:)+r~�f
(g:f:)

i
; (4)
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1The equilibrium position ~�eq: coincides with the chamber center of
symmetry only in the absence of guiding fields.

where r~�, r~�b is the gradient taken w.r.t. the suffix coor-
dinate, and all derivatives are taken at ~� = ~�b = ~�eq:.

For both cases, the linearized Lorentz force equation
reads:
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2
0
��U � ~� = 0; (5)

where~� = ~��~�eq:,� = s=c, 
c is the circulation frequency,

�0 the unperturbed tune, �20
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y and ��U is a 2nd-rank tensor2:
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where the tune-shift tensor ���� can be further factored as:
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Here the first factor depends only on the gross machine fea-
tures, (N is the total # of particles in the beam, R the ring
radius, r0 the classical particle radius, L the transverse di-
mension of the chamber) while the Laslett tensor:
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(8)

depends only on the transverse pipe geometry � =

Nq=2�R being the beam linear charge density. Intro-
ducing the betatron normal modes diagonalizes the Laslett
tensor, yielding the normal-mode Laslett coefficients [2]:
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�11 + �22
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#1=2
: (9)

2.1 Image Force Potential

For coasting or relativistic bunched beams running par-
allel to the z-axis, ~f (im:) can be computed in terms of elec-
tric and magnetic image potentials �(im:) and ~A(im:) =

A(im:)ûz as follows:

q�1 ~f (im:) = rt

h
��(im:) + �0A

(im:)
i
; (10)

2Here we assume for simplicity no H-V betatron coupling, in the ab-
sence of space-charge and image effects, as well as H-V symmetry.



Where �;A are found by solving:
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In general both image potentials contain static (=) as well as
dynamic (�) terms. The boundary conditions to be imposed
on the static and dynamic components of � and A are dif-
ferent. For the static components, the boundary conditions
are (continuity of the tangential fields across the conducting
liner and magnetic yoke surfaces S` and SY , respectively):

8>><
>>:

�=jS` = const:;

@A=

@n

����
S
Y�

= ��1R

@A=

@n

����
S
Y +

:
(12)

For a liner made of good conductor of finite thickness, the
high frequency spectral components of the (dynamic) poten-
tials will not penetrate beyond the liner’s wall, and the b.c.
will be:

��jS` = const:; A�jS` = const:; (13)

viz., n̂ � ~e� = n̂ �~b� = 0 at S`, respectively, whence, in
view of (11):

A� = �0�� = �0 [�(~�; ~�b) � �=(~�; ~�eq:)] : (14)

The spectral components of the magnetic field below some
critical frequency will penetrate beyond the liner’s wall,
and for these penetrating AC components, the b.c. will
be the same as for the static term, viz. (12)3. In the in-
coherent regime, the (transverse) beam center of charge is
fixed at ~�b = ~�eq:, so that both � and A are static. In the
coherent regime the beam undergoes coherent (rigid, col-
lective) transverse oscillations, and the fields contain both
static and dynamic terms. It is seen from (14) that in the
non-penetrating (high frequency) regime the image force is
the same as in the incoherent regime in the limit of �0 �! 1.

2.2 Auxiliary Complex Potentials

The force can be conveniently derived from a complex po-
tential, where, in general [2]:

�(im:)
� �0A

(im:) = 2� Re �	(�z; �zb; �z
�

b ); (15)

where �z = (x+ iy)=L is the (scaled) field-point, and �zb =

(xb+ iyb)=L the (scaled) source-point, L being a problem-
dependent scaling length (e.g., the pipe size). Let further:

_�	 = �U (�zb) + �V (�z�b ); (16)

3In order to decide between the penetrating and non penetrating field
regime at a given frequency f , we should compare the liner’s wall thick-
ness to the skin depth at that frequency� = (�f�w�w)�1=2, �w and�w
being the electrical conductivity and magnetic permeability of the liner’s
wall. A possible refinement would be to consider partial penetration of the
fields through the pipe walls [4], [5].

where dots mean derivation w.r.t. the argument. Then, from
eq.s (9), the following formulae are readily established [2]:
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for the incoherent regime;
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for the (low frequency) coherent penetrating regime, and:
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for the (high frequency) coherent non-penetrating regime,
where �Uel:, �Vel: denote the electric parts of �U; �V , and all
derivatives are evaluated at �z = �zb = �zeq:. Equations
(17) to (19) are not restricted to any special geometry, and
thus provide a general framework for computing the normal
mode (incoherent as well as coherent) Laslett coefficients
for beam liners surrounded by a (coaxial) magnetic yoke.

3 RESULTS

The above formalism has been applied to a variety of cases
of practical interest, e.g. for the LHC. As an example,
the incoherent and coherent Laslett coefficients for a circu-
lar pipe in a coaxial magnetic yoke are shown in Fig.s 1 to 4.
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Figure 1: Incoherent Laslett Coefficient for circular liner
within a circular bore magnetic yoke (�r=5000); � = scaled
distance from axis. R = scaled yoke radius

Figure 2: Coherent Laslett Coefficient, normal mode #1,
for circular liner within a circular bore magnetic yoke
(�r=5000); � = scaled distance from axis. R = scaled yoke
radius

Figure 3: Coherent Laslett Coefficient, normal mode #2,
for circular liner within a circular bore magnetic yoke
(�r=5000); � = scaled distance from axis. R = scaled yoke
radius

Figure 4: Coherent Laslett Coefficient, non-penetrating
modes, for circular liner within a circular bore magnetic
yoke (�r=5000); � = scaled distance from axis. R = scaled
yoke radius


