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1   INTRODUCTION

There are different types of bunchers for changing dc
beams  into pulsed beams or into bunch succession.
These bunchers consist of cavities and cavities spacing
that resonating at the fundamental linac frequency or one
of the harmonics. The main problem rising before
creating buncher system of any type is a choice of
algorithm to optimize such parameters as RF amplitudes
and cavity and cavity-accelerator spacing to obtain
minimum phase extent of a bunch coming out of a beam
buncher system.
  At present work the criterion is proposed to compare
the buncher efficiency based on the correlation between
start phase shape of bunches and the same one at the
entrance of buncher. An analytical method has been
developed to investigate any types of bunchers and to
define their optimized parameters. The method also can
be extended to include nonlinear effects and beam and
HF system instabilities.

2   THEORY

We consider a buncher that translates initial phase θ of
particle tracing through the bunching system into its
final phase φ. The last one depends on set of parameters
of buncher and beam xi   as
 φ.= φ.(θ, x1, x2 ,... xn),  where i=1,2,...,n. Let ∆φav being a
middle-square phase dimension of bunch after passing
the buncher with the initial phase θ satisfies the
condition  -α ≤ θ ≤ α with  α ≤ π  or
 α = Ρπ/100, in which Ρ is percent of particles under
those optimization is undertaken. It can be written
general definition:

∆φav nx x x d= −
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  Another convenient parameter of buncher is the initial
decrease factor Kav that can be defined as
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It will be a optimized parameters buncher when for
given α (or percent of bunching particles P) value of ∆φav

will have a minimum ( or Kav will have maximum). The

optimized values of xi  (for i=1,2...n) can be found from
following relations:
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For the obtaining of optimized parameters xi a set of
equations (3) must be solved.

3   SINGLE  GAP BUNCHER

3.1   Linear application

    Let V is the voltage on the electrode when the particle
crosses the gap and L is bunching distance, eV0 is the
energy of electrons or ions, where V0- injection voltage.
If the space change have been neglected we can write
following expression for final phase :
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where λ is the wavelength, β0=v0/c- the initial velocity of
particle, η=V/V0, T(d) - is the transit angle function, d -
acceleration gap length, F(r) = I0(ξr)/I0(ξa), r - certain
particle radius into the beam, a - buncher electrode
radius, ξ=2π/λβ0. If η<<1 we can derive  from (4)
neglecting other orders of η :
             φ=θ−µ sin(θ)+φ0 ,                          (5)
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linear approximation gives us the final phases of particle
as a function of single parameter µ , and we can obtain

the optimized value of µ by substitution eq. (5) into (1)
and then when integrated into (3). After taking
transformations we shall arrive:
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Following substitution of eq. (6) into (2) yields a next
equation :
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The value of µ and K0av as a function of P is shown in
fig.3.
    3.2   Nonlinear approximation

Let η<1 and then the expression for φ would be obtained
as the expression :



φη=φ0av+θ−µ. sin(θ)−(3/4)µη sin2(θ)-
 -(5/8)µη2 sin3(θ)+…   ,                                (8)
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C3=(3/4)α+sin(2α)/2+sin(4α)/16.
Combining eqs. (8) , (1) and (3) we can easily show that
the expression for optimized parameter of  µ without
terms of higher exponents is given by:
        µη(α)=µ0(α)[1−D1(α)η2]   ,                    (9)
where  D1(α)>0 for all α−values. Combining eqs (9) and
(1) it can be derived the next correlation of middle
square bunch dimensions and ∆φ0av from eq. (7);

     ∆φηav(α)=∆φ0av(1)+D2(α)η2   ,                     (10)
where D2(α)>0.  If follows from (9) and (10) that
optimized value of µ decreases with increasing voltage
V and phase shape of bunches is increasing at the same
time as much more as initial phase interval narrows.

3.3   Effect of beam and buncher parameter
unstabilities

If the buncher and beam parameters such as bunching
distance, fundamental frequency and voltage in the
cavity are adjusted the final bunches have a defined
shape. At practice, always there are several deviations of
above parameters and fundamental frequency, initial
energy and voltage on cavity can be represented in the
following form:
               ωd = ω(1+δ1)    ,                      (11a)
              V0d = V0 (1+δ2)  ,                      (11b)
              Vd = V (1+δ3)    ,                      (11c)
where δi<<1 are the relative deviation ( i =1,2,3) . It must
be emphasized that changing of frequency and energy is
effected both on µ and φ0 as at the same time voltage on
cavity effects µ only. We obtain the relative deviation of
decrease factor in a manner above:
δKi(δi)=≡Kiav/Koav=[1+(K0

2-1)Biδi
2]-1/2 ,        (12)
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         B3 = 1                                         (12c)
As 1/η2 >> 1 then B1 > B2 > B3 , so for the same value of
δi the biggest effect has parameters ω (fundamental
frequency), the next is eV0 - the injection energy and the
last one is a voltage on cavity V.
   As the values of deviations δKi are not fixed but are
given by some, other distribution functions, it can be
found the average deviation of decrease factor by
integration eq.(12):
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where a is constant and δ0i is a maximum value of i -
parameter, ρ(δi) is distribution density of i - parameter.
The convenient example for estimation is the uniform
distribution: ρg(δ)=const for δ<δ0, ρg(δ)=0 for δ>δ0 .
In such a case we have :
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where χi = δ0i / [Bi(K0

2-1)]1/2. If we in such a manner fix
the maximum deviation of δKig

av then it can be shown the
maximum admitted deviation of δ0i is :
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As one can see from eq.(15) the value of the admitted
deviation is inversely proportional to decrease factor.

4   DOUBLE GAP BUNCHER

Usually double gap buncher consist of two cavities
closely arranged and added with one bunching distance
or two cavities separated with one bunching distance or
two cavities separated with bunching spacing and
followed by buncher-accelerator distance. Under such
circumstance a different combinations of waveforms are
used (fundamental and higher harmonics) for 1 and 2
cavities.

4.1   Double gap buncher excited by
fundamental frequency with two bunching
spacing

Let the particle eV0 energy is injected the first cavity
with voltage on electrode V1 and crosses through
bunching spacing L1 to the second cavity with voltage on
electrode V2 and again passes spacing L2 and finally
enters to accelerator. If V1<<V0 and V2<<V0 the linear
approximation gives us the following expression for a
final phase as a result of combining eq.(16) and (1) :
φ2=θ−(µ1+gµ2)sin(θ)−µ2sin(θ−µ1sin(θ))+φ02 ,      (16)
where µj=πLjV0/λβ0V0 , g=V1/V2 , φ02=2π(L1+L2)/λβ0 ,
j=1,2 and then substituting these into eq.(3).
Contrary single gap buncher case here it is not possible
find an analytical relations between g, µ1,µ2 and α We
have developed a numerical method for solving the
system of equations (3). As a result it has been found
that there are the optimized parameters µ1

o and µ2

o that
insure minimum value of final bunches under given P
and g. Absolute minimum of ∆φ02av corresponds to g=0
the hypothetical case with L1→∞. It means that a first
cavity and bunching spacing role is to provide the
needed phases of particles coming the second cavity
when its voltage on electrode passes the linear part of
sinusoid. When g value or L1 decreases above condition
breaks and phase dimension of bunches begins to
increase. Phase decrease factor as function of g is shown
in fig.1.



0 .0 0 .2 0.4 0.6 0.8 1.0
g= V1/V 2

0

5

10

15

20

25

IN
IT

IA
L

 P
H

A
S

E
 D

E
C

R
E

A
SE

 F
A

C
T

O
R

  
K

av

P  =  50 %

P  =  70 %

P  =  90 %

     Figure 1.
Kav is a function of two parameters µ1 and µ2  is been a
surface in coordinates (µ1,µ2). Maximum of Kav will be P-
dependent, such as for P>70% only one maximum exists
for µ>1. For lower value of P µ<1. In such case the
optimized values of µ for the first maximum are
decreased.

4.2   Double gap buncher excited by second and
fundamental harmonics with a neared cavities

If the voltage on electrode of fundamental harmonic gap
is V11 and on electrode of second harmonic gap is V12

then particle energy passing the construction can be
written as ;
W=eV0+eV11sin(θ)-eV12sin(2θ).                    (17)
In a case V11<<V0 and V12<<V0 we obtain the following
relation for the final phase of buncher:
φ21=θ−µ12(sin(θ)-g12sin(2θ)+φ021,         (18)
where g12=V12/V11 , µ12=πLV11/λβ0V0 , φ0=2πL/λβ0. The
expressions for µ12  and g12 optimized values can be
found by combining eq. (18) and (1) and then with (3):
g12

o=(C1C4-C2C3)/(C1C5-C3C4) ,        (19a)
µ12

o=(C1C5-C3C4)/(C2C5-C4

2)   ,        (19b)
where C1 and C2 are defined in part 2.1  and then with
(3):C3=(sin(2α)-2αsin (2α))/4, C4=2sin3(α)/3,
C5=(4α−sin(4α))/8. The values of g12

o and µ12

o as a
function of P are shown in fig. 2 and corresponds value
K21av

o are shown in fig. 3.
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5    DISCUSSION AND CONCLUSION

The proposed method of calculation of optimized
parameters of buncher take it possible to analyze the
effect different factors on final shape of bunchers.
It is shown for the case of single gap buncher that: - the
initial phase limits are determining the optimized values
of buncher parameters for which the initial phase
decrease factor reaches its maximum ;
- the increase of voltage on electrode yields the increase
of phase shape of buncher;
- a deviation of optimized parameters values yields the
increase of phase shape of buncher and the appropriate
values of deviations are inversely proportional to
decrease factor;
- the biggest effect on the value of relative deviation of
decrease factor has parameter ω (fundamental
frequency), the next one is eV0- the injection energy and
the last one is a voltage  on cavity V.
For double gap buncher excited by fundamental
frequency there are exist a optimized values of
parameters those depend on the initial phase interval and
relation voltages in first and second cavities. Also phase
shape of buncher decrease under the decreasing of the
V1/V2 relation.
The double gap buncher excited by fundamental
frequency and second harmonic all optimized parameters
of a buncher are uniquely determined by initial phase
interval.


