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Abstract

Theory of resistive wall instability damping using a feed-
back system with a digital filter and delay is developed.
A system of equations is obtained for description of beam
motion. To solve equations the Z-transform method is used.
The general solutions are analysed for feedback circuit with
a digital filter and delay. The damping time is found for
the feedback with an additional one revolution period de-
lay and for the feedback with a single beam correction per
two revolutions.

1 INTRODUCTION

Transverse feedback systems (TFS) are used in syn-
chrotrons to damp the coherent transverse beam oscilla-
tions [1]. In these systems the kicker (DK) corrects the
beam angle according to the beam deviation from the
closed orbit in the pick-up (PU). A classical TFS consists
of one PU and one DK per plane. A schematic diagram
of this system is shown in Figure 1. The DK changes the

�
@
�
@

� @

PU

�

filter�
@
�
@

�

@ DK

�
beam

Figure 1: Schematic diagram of the TFS

angle of the same fraction of the beam that was measured
by PU. The delay� is adjusted to provide such a synchro-
nization. The value of this delay is normally less than one
turn and the kicker corrects the beam angle at every turn.
But sometimes this value may be more than one revolution
period. Such situation can occur for a synchrotron with a
short length of circumference or for a feedback circuit with
a special digital filter where procedures for signal transfor-
mations are realized with signal processors. This paper is
based on studies of TFS for feedback circuit with a more
than one revolution period delay.

2 THEORY

The description is based on the theory of multi-bunch resis-
tive wall instability damping where aZ–transform method
is used to obtain a general solution [2], [3]. This approach

was effectively used to solve the problem of the beam dy-
namics in an accelerator with a digital feedback.

2.1 General Approach

Taking into account the results obtained in [2] the study
of the transverse coherent motion bunch dynamic is started
for independent bunches. In this case the bunch coupling,
which occurs due to resistive wall instability, is neglected
and the matrix method becomes suitable for the beam mo-
tion description.

Let the column matrixbX[n; s] determine the bunch state
at then-th turn at points of the circumferenceC0. The first
element of this matrix equals the beam deviationx[n; s]
from the closed orbit and the second one isx0[n; s]. Af-
ter a short DK thex0 value of the beam is changed by
�x0[n; sK ], while deviation remains the same as before the
DK at point s�K . Hence, after DK at points+K , the beam
state is

bX[n; s+K ] = bX [n; s�K ] + bT� bX[n; sK ];

wherebT is the2�2 matrix in whichT21 = 1 and the other
elements are zero. The kick is determined with column ma-
trix � bX [n; sK ], where the first element equals�x0[n; sK ]
and the second one has an arbitrary value.

Let us introduce the unperturbed revolution matrixcM0

from pointsP of the PU location to pointsP + C0 and the
transfer matrixcM1 from point sK of the DK location to
pointsP + C0:

cM0 = cM(sP + C0; sP );cM1 = cM(sP + C0; sK): (1)

Then at the PU location at the(n+1)-th turn the beam state
is

bX[n+ 1; sP ] = cM0
bX[n; sP ] + cM1

bT� bX[n; sK ]: (2)

Let �x0[n; sK ] be proportional to the output voltage in
the feedback circuit duringn-th crossing of the kicker. The
input voltage is assumed to be proportional to the beam de-
viationx[m; sP ] in the pick-up. The kicker should change
the angle of the same fraction of the beam that was mea-
sured by the PU. The delay� = qT0 + �l is adjusted to
provide such a synchronization (q is integer,T0 is the revo-
lution period,�l is the time of the particle flight between PU
and DK). For the studied problem the value ofq is greater
than zero and the kick at then-th turn depends on the beam
state at the previous turns (m = n� q).



2.2 Every Turn Correction

If the kicker corrects the beam angle at every turn, then:

� bX[n; sK ] = u[n� q]
Kp
�P�K

bX[n� q; sP ]; (3)

where�P and �K are the transverse betatron amplitude
functions in the PU and DK locations,K is the gain of the
feedback, andu[n] is the discrete unit step function [4].

Substituting� bX [n; sK ] from Eq.(3) in Eq.(2) we get

bX[n+ 1; sP ] = cM0
bX [n; sP ] +

+u[n� q]
Kp
�P�K

cM1
bT bX [n� q; sP ]: (4)

Eq.(4) fully describes the beam dynamics in an accelerator
with a feedback system considered. This equation is solved
usingZ-transform [4] for bX[n; s]:

bX(z) =

1X
n=0

bX[n; s]z�n; (5)

bX [n; s] =
X
k

Rez
h bX(zk)z

n�1
k

i
:

The motion of the particles will be stable ifjzkj < 1. The
beam motion parameters are fully determined by the singu-
lar pointszk : the number of oscillations per turnfReQkg
equalsarg(zk)=2� and the damping time�D is

T0

�D
= � ln jzkj: (6)

UsingZ-transform for Eq.(4) we get

bX(z) =
zbI �cM�1(z) detcM(z)

det
�
zbI �cM(z)

� z bX[0; sP ]; (7)

cM(z) = cM0 +
z�q eK(z)p
�P�K

cM1
bT ; (8)

wherebI is the unit matrix;bX [0; sP ] is the initial beam state
matrix; eK(z) is the transfer function for a feedback circuit.
It is known [4] that in radiotechnical sense the circuit is
stable if all the singular points ofeK(z) lie inside the circle
jzj < 1. If this condition is fulfilled, the singular pointszk
in (7) are found from the equation [3]:

det
�
zkbI �cM(zk)

�
=

= z2k � zkTrcM(zk) + detcM(zk) = 0: (9)

When instability occurs, Eq.(9) will have the same form
but the betatron phase advances for elements ofcM(z) must
be calculated with a complex value ofQ(z) both for coast-
ing [5] and bunched [2] beams.

If the feedback circuit of a damper system has a digital
filter then the transfer functioneK(z) must include the filter
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Figure 2: Schematic diagram of an IIR–filter

system function. For example,eK(z) with an IIR–filter (see
Fig.2) is eK(z) = jK jz + a

z � b
; (10)

wherejK j is the gain factor of feedback circuit without any
filter.

2.3 Single Correction per Two Turns

A feedback system with single correction per two turns can
be of two types:

(a) DK corrects the beam angle at the same turn when PU
measures beam deviation, and there are no corrections
at the next turn;

(b) DK corrects the beam angle at the next turn after PU
measuring of beam deviation.

The relation between two states forbX[m; s] is constructed
due to the two turns periodicity of these corrections. In ac-
cordance with Eqs.(4, 3), the beam statebX[m+1; s] (after
two turns) is

(a) : bX [m+ 1; sP ] = cM0

�cM0 +

+
Kp
�P�K

cM1
bT� bX[m; sP ]; (11)

(b) : bX [m+ 1; sP ] =
�cM2

0 +

+
Kp
�P�K

cM1
bT� bX[m; sP ]: (12)

Z–transformations of Eqs.(11, 12) yield similar equations
for bX(z) as Eq.(7). The matrices for determining singular
pointszk in Eq.(9) are

(a) : cM(z) = cM2
0 +

eK(z)p
�P�K

cM0
cM1

bT ; (13)

(b) : cM(z) = cM2
0 +

eK(z)p
�P�K

cM1
bT ; (14)

whereeK(z) has been determined in (10).

3 RESULTS

3.1 Every Turn Correction

For an every turn correction with an IIR–filter and an ad-
ditional delay in the feedback path the equation (9) forzk



with cM(z) from Eq.(8) andeK(z) from Eq.(10) is

z2 �
�
2 cos(2�Q) +

jK j
z

z + a

z � b
sin(2�Q�  )

�
z

+1� jK j
z

z + a

z � b
sin = 0; (15)

whereQ is the number of unperturbed betatron oscillations
per revolution in transverse plane, and is the betatron
phase advance from PU to DK. Eq.(15) is the forth power
equation, whose four roots determine the beam stability di-
agram. IfjK j � 1, then in linear approximation we obtain:

z1;2 =

�
1� i

jK j
2

exp (�i(2�Q+  ))

�
exp(�i2�Q)

�ia+ b

2
jK j b� exp(�i2�Q)

1� 2b cos(2�Q) + b2
exp(�i ) ;

z3 = b+ jK j
�
1 +

a

b

� b sin(2�Q�  ) + sin 

1� 2b cos(2�Q) + b2
;

z4 = jK ja
b
sin : (16)

Roots 1 and 2 correspond to the eigen frequencies with the
number of oscillations per turn in the neighbourhood of
ReQ. Roots 3 and 4 correspond to two new modes that are
conditioned with the IIR–filter structure and the one turn
additional delay. The conclusions [5] made for the filter
parameters are valid here too. Thus, to provide the inde-
pendence onjK j of the feedback action on the closed orbit
displacement and for the best suppression of the revolution
harmonics it is necessary to seta = �1. The other filter
parameterb is chosen due to optimization on the maximum
damping rate and the width of the stability region.

The best damping will be for the other PU and DK lo-
cations than without one turn delay. Indeed, the damping
time�D without any filter (a = b = 0) is due to Eqs.(15, 6)

T0

�D
=

1

2
jK j sin(2�Q+  )� 2�jImQj: (17)

Hence, the best damping will be for the PU and DK loca-
tions such that

j sin(2�Q+  )j = 1; (18)

i.e. if the sum of the phase advance from PU to DK and
the phase advance2�Q for the turn is equal to an odd num-
ber of�=2 radians. This statement is quite clear because
the PU sample and the DK correction are proceeded with
one turn delay. It is necessary to emphasize that the damp-
ing rate value for optimal PU and DK locations (18) is the
same as without additional delay.

3.2 Single Correction per Two Turns

All further results are shown for a feedback without a filter
in order to simplify the final equations. Eq.(9) forzk withcM(z) from (13) and (14) is

(a) : z2 � (2 cos(4�Q) + jK j sin(4�Q�  )) z +

+1� jK j sin = 0;

(b) : z2 � (2 cos(4�Q) + jK j sin(2�Q�  )) z +

+1� jK j sin(2�Q+  ) = 0:

Hence, the damping time

T0

�d
= �1

2
ln jzkj

in linear approximation (jK j � 1) is

(a) :
T0

�d
=

1

4
jK j sin � 2�jImQj;

(b) :
T0

�d
=

1

4
jK j sin(2�Q+  )� 2�jImQj:

Therefore, the best damping will be for those PU and DK
locations that take into account the phase advance from the
PU sample to DK correction including the one turn delay.
It is important to emphasize that the damping rate values
for the feedback with the single correction per two turns
are two times slower than the values for a feedback with
every turn correction.

4 CONCLUSION

The consideration of damping regimes for a damper sys-
tem with an additional one turn delay in the feedback path
allows one to maintain that every turn correction is prefer-
able. The damping rate value for this feedback with every
turn correction is the same as for a damper system without
additional delay.
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