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1 INTRODUCTION

The propagation of electromagnetic waves in periodic, di-
electric structures became a widely investigated subject.
The photonic bands concept [1] or new types of localized
states [2] are consequences of such phenomena.

In condensed matter systems with scatterers periodically
arranged, the propagation is naturally described by a vector
version of the band theory [1].

It is also well known that dimensionality plays a major
role in the behavior of strongly scattering systems. The
lower the dimension, the easier it is to have band gaps (a
certainty in 1D). The theory of waves in a random medium
suggests that all states are localized in 1D and marginally lo-
calized in 2D. For 3D it is generally believed that a mobility
edge exists.

The case of microwave propagation in strongly scattering
dielectric lattices is experimentally and theoretically inves-
tigated [3], [4].

However, our work solves a different problem: analyzing
the electromagnetic wave propagation in a given dielectric,
periodical structure which has a defect, obtaining the pho-
tonic band structure and the spatial distribution of the trans-
mitted power.

The numerical solution of this case is obtained in two
steps:

a) computing the photonic band structure by using a
proper version of the band theory;

b) computing the spatial distributions of the electric and
magnetic fields, as well as of the transmitted power, by using
an original version of the ”collocation method”, for the case
of coupled differential equations and an infinite number of
independent variables.

2 THEORY AND SIMULATIONS

The periodical structure we studied consists of a square lat-
tice of dielectric rods (having dielectric constant "1) imbed-
ded in a medium with an �2 dielectric constant.

For a general 3D case, one obtains from Maxwell’s equa-
tions, by standard calculations and using the condition that
the electric field points along the ”z” axis, the following
scalar 2D wave equation:
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The dielectric constant distribution is given in our case
by:
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working one, defined by the ”collocation” points (M >>

N ) which are not equidistant.
The direction of propagation
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ways, therefore being necessary to establish the connection
between the coordinates of the two lattices described pre-
viously and two new lattices: fxi; yig ; fxm; ymg, obtained
by rotating the old ones such as the y axes to point along
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With the new coordinates, the wave equation is:
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We seek its solution (x; y) as a linear combination over
a set of suitable orthogonal functions �n (x):
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The choice of�n (x) depends on the boundary conditions
and the symmetry of the guiding structure. In our case, the
Laguerre - Gauss functions are the most appropriate:
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where An�1is the normalization constant and � is a param-
eter which can be chosen arbitrarily, but its choice crucially
influences the accuracy for a given value of M .

The expansion in equation (3) must satisfy exactly the
differential equation (2) at M ”collocation points”. These
points are chosen such that they are zeroes of �M+1:

LM (�xj) = 0 , j = 1; :::;M (5)

the solutions being well documented in literature.
Writing the Helmholtz equation (2) at each of these col-

location points, we obtain a set ofM total differential equa-
tions which can be written in matrix form:
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The expression in (6) may also be written as:
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if: S = BQ�1 + R (y), with Bij =
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and Qij =

�j (xi).
We made no approximation in deriving (7) except that

M is finite. The matrix total differential equation can be
now solved as an initial value problem using any standard
method.

The constraints imposed by the periodicity of the solution
in the initial coordinates (
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) give rise to the equa-

tions which define the photonic band structure !
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We must underline that we did not use average or smooth-
ing dielectric constants as in [1], [3] and that the computing
time and the efficiency are real advantages of our approach.

3 RESULTS AND DISCUSSIONS

If we create a defect (a missing rod at (x0; y0)) the band
structure is clearly changed in comparison with the case
when we have a totallyperiodic structure, the solution and
the spatial power distribution having also different shapes.
This is the phenomenon which allows the application stud-
ied in our work: the acceleration wakefield modes.

The electric field has a strong variation in the neighbor-
hood of the defect. The great values of the field allow the
application of this effect in producing particle acceleration
structures. The particle beam must point exactly along the
axis of the missing rod from the 3-D lattice, thus interacting
with the generated field.
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