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Abstract

The paper describes an attempt made at the ESRF to
calibrate the main storage ring quadrupoles through the
response matrix fitting. The developed procedure as well
as the outcomes are presented along with features that
turned out to be noteworthy.

1  INTRODUCTION
The best knowledge of quadrupole calibration is

essential in exploiting the full performance of the
challenging optics of the new generation light sources. A
calibration using the orbit response matrix had previously
brought about a significant improvement in the optics
modelling [1]. A more direct way of determining the
effective quadrupole strengths and therefore the optics has
recently been attempted via a least square fit of the
measured response matrix.♦  Three features have been
additionally taken into account. 1) To fit the measured
displacement and deduce simultaneously the steerer
calibration. 2) To remove the dispersive component from
the measured displacement. 3) To acquire the response
matrix and operate the machine over a wide range of
quadrupole currents to study the global behaviour [3].

2  CALIBRATION MODEL
There are two basic sets of ingredients; {I, G} Poisson

and {I, (Gl)} meas  (G ≡ ∂Bz/∂x). For a given quadrupole
current I, its corresponding default strength k0 and
magnetic length L0 are given by  [1],
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where int signifies interpolated. Our goal is to find the
effective strength k, or equivalently, coef defined by
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One could as well define the magnetic length L to
experience the same degree of change as the field:
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______________________________________________
♦  After this work had been completed, we came across a work
made in a similar spirit [2].

The modified definition of coef allows the effective
integrated strength to have the same expression in the two
models. As different ways of distributing the integrated
strength into k and L may influence the degree of
subsequent optics fitting, some comparisons are made.

3  RESPONSE MATRIX FITTING

3.1 Least Square Fit

What is performed is simply the least square fit of
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where  

M:  Number of BPMs, Nu: Number of steerers in plane u,
Rij

(u), Aij
(u) :  Measured and fitted response matrices,

by varying the strength of all existing quadrupole
families. In the ESRF machine, there are eight quadrupole
families, M = 224 and Nh = Nv = 96. There are as many
as 224 × 96 = 21,504 matrix elements. However, since
our goal is to calibrate the quadrupoles by families, and
since the designed optics in all cases possess a 16 fold
symmetry, we shall average over every 16 elements of
Rij (u) that are ideally identical.

3.2 Steerer Calibration

The measured response matrices Rij (u)’s actually depend
on the steerer calibration since,

Rij (u)  =  dUij / dθj   =   dUij (u) / (cj . dIj) , (3.2)

where

dUij : Displacement measured at i-th BPM,
dθj : Kick angle given to j-th steerer,
dIj : Current increment,
cj : Steerer calibration coefficient.

Even though dUij  could be measured with high accuracy,
the same degree of accuracy may not be kept for Rij (u)

unless there is a good knowledge of cj. We shall therefore
work with the original displacement dUij  and attempt to
determine the plausible cj by including into the fitting
algorithm, a step to minimise the function
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whenever a new set of Aij (u), namely, a new optics is
computed. The above condition leads to
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3.3 Path Length Effect

A kick dθj of j-th steerer at which there is a non-zero
horizontal dispersion Dj creates a path length deformation
of the closed orbit by dLc = -Dj.dθj, shifting therefore the
energy by
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Here, Lc is the machine circumference and α  denotes the

momentum compaction. This means that dUij  contains an
extra dispersive term besides the part we are interested in,
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We shall utilise the measured dispersion (Di)meas to

subtract off the unwanted term. A precise α  value is not
needed here since one may fit and extract the dispersive
part by minimising
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which defines the corresponding energy deviation
parameter
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3.3 Simulation

What was described above has been implemented into
the computer code CATS [4]. An example of simulation
is shown that confirms the effectiveness (Fig. 1). In the
example, the quadrupoles are randomly varied to less than
1%, the steerer coefficients by ±20%, with which a
response matrix is generated. The fitting is then performed
on this matrix starting from a certain point. One sees that
all are converging in the right directions. As one may

expect, the response matrix fitting is found to be
particularly sensitive to the tunes of the optics.
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Fig. 1: Simulation of response matrix fitting.

4  ACTUAL RESULTS

4.1 Choice of the Optics and the Response
Matrix Measurements.

To cover a wide range in the quadrupole settings, the
standard optics at a different energy as well as an exotic
low α  optics were included. Orbit displacements were
chosen to stay within the linear range:  rmsH ~ 0.3 mm
and rmsV ~ 0.2 mm.

4.2 Characteristics of the Performed Response
Matrix Fittings.

The converged solutions mostly reproduced the
measured matrices down to a few percent, always resulting
in better fits vertically. In terms of displacement,
typically ~7 µm horizontally and ~2 µm vertically. With
the low α  optics that has a large horizontal dispersion,
the path length correction turned out to be significant to
get a good convergence (Fig. 2). There was an
improvement of a factor of five in the fit after removal of
the dispersive contribution. The effect was however
negligible in the remaining cases.
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Fig. 2: The obtained energy deviation parameters.

4.3  Steerer Calibration.

The response matrix fit quasi uniquely determined the
calibration coefficients cj’s. The results reveal a saturation
like effect of the steerer field, giving variations up to
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~15% (horizontal) and ~5% (vertical), as a function of the
sextupole current in the combined function magnets (Fig.
3).
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Fig. 3: Steerer calibration versus sextupole current.

4.4  Obtained Quadrupole Coefficients.

Thanks to the corrections of steerer calibrations and the
path length that contributed non-negligibly, the necessary
accuracy of <10-3 level was reached in identifying the
quadrupole coefficients. Plotting the best fit coefficients
versus current, one notices a global trend that effective
quadrupole strength weakens with the increasing current,
which may arise from proximity effects in the magnet
assembly (Fig. 4).
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Fig. 4: Quadrupole coefficients versus current.

4.5  Comparison of the Two Different
Calibration Models.

The results of the fits in the modified calibration model
turned out to be nearly identical to the original model
(Fig. 5). The fact signifies that what counts in the fit is
the effective integrated strength. The independent fitting
made in parallel also assures the correctness of the
obtained results.

5  CONCLUSION
To obtain an accurate calibration of the storage ring

quadrupoles, the fitting of the orbit response matrix was
attempted by varying the strength of the eight quadrupole
families. As any existing asymmetry is out of the present
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Fig. 5: Quadrupole coefficients for the two models.

concern, averaging is made over the matrix elements prior
to the fit to remove the imperfections. The steerer
calibration  turned out to be quasi uniquely determined in
course of the response matrix fit. The steerers being
combined with sextupoles in the ESRF machine, the
results revealed a certain dependence of the dipole field on
the sextupole current. The path length effect was found to
be significant with optics that have large horizontal
dispersions.

Thanks to the two significant corrections above, the
response matrix fitting provided precision on the
quadrupole calibration down to the necessary 10-4 level.
The coefficients averaged over the best fits predict the
phase advance per unit cell in almost any optics loaded on
the machine up nearly to one degree accuracy even in the
horizontal plane.
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