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Abstract

The theory of a transverse feedback system with a non-
linear transfer function is described. For this feedback
loop the dependence between the kick and the beam
deviation at the pick-up location is a nonlinear func-
tion. The beam dynamic equation of the transverse
coherent motion for deviation from the closed orbit
has been obtained. This nonlinear equation has been
solved using approximation procedure. Damping time
and asymptotic behaviour of the beam oscillation am-
plitude are analysed for different parameters of the
nonlinear transfer function.

1 INTRODUCTION

Transverse feedback systems (TFS) are used in syn-
chrotrons to damp the coherent transverse beam os-
cillations. In these systems the kicker (DK) corrects
the beam angle according to the beam deviation from
the closed orbit in the pick-up (PU) location at every
turn. TFS have been widely used to suppress resis-
tive wall instability and to provide a beam oscillation
amplitude decrease after injection. Most TFS use dig-
ital electronics for signal processing in the feedback
loop [1]. Hence, its transfer function has a quasi-linear
character. On the SPS, the “bang-bang” regime was
realized to increase the efficiency of TFS [2]. Its trans-
fer function consists of a linear part for small ampli-
tude oscillations and a high fixed level gain for large
oscillations. For modern hadron accelerators, there is
a proposal of TFS with the so-called “logical mode”
of damping [3]. Its transfer function is a step function
with two jumps. Thus, the transfer characteristics of
these TFS are nonlinear. There are only estimations
for its damping parameters. For example, in [3] a nu-
merical simulation was used for estimation of damping
time.

This paper is based on analytical description for
beam dynamics. The nonlinear equation of the trans-
verse coherent motion for deviation from the closed
orbit is obtained. Approximate solution of this equa-
tion is found using the Krylov–Bogoliubov method [4].
Damping time and asymptotic behaviour of the beam
oscillation amplitude are analysed for different param-
eters of the nonlinear transfer function. All results are
obtained for feedback description when instability is
neglected.

2 THEORY

2.1 Basic Equation

The equation of the transverse coherent motion for
the particle deviation from the closed orbit x[n, s] at
the n-th turn can be written as[

d2

ds2
+K(s)

]
x[n, s] = ∆x′[n] δ(s− sK), ψ (1)

where K(s) is a focusing strength and δ is Dirac’s delta
function. A localized kick is determined by ∆x′.

In (1) all effects, which occur due to resistive wall
instability, are neglected and the matrix method be-
comes suitable for the beam motion description. Let
the column matrix X̂[n, s] determine the bunch state
at the n-th turn at point s of the circumference C0.
The first element of this matrix equals the beam de-
viation x[n, s] from the closed orbit and the second
one is the beam angle x′[n, s]. After a short DK the
x′ value of the bunch is changed by ∆x′[n, sK ], while
deviation remains the same as before the DK at point
s−K . Hence, after DK at point s+K , the beam state is

X̂[n, s+K ] = X̂[n, s−K ] + ∆X̂[n, sK ],

where the first element of column matrix ∆X̂[n, sK ] is
zero and the second one equals ∆x′[n, sK ].

Let us introduce the unperturbed revolution matrix
M̂0 from point sP of the PU location to point sP +C0
and the transfer matrix M̂1 from point sK of the DK
location to point sP +C0. Then at the PU location at
the (n+ 1)-th turn the beam state is

X̂[n+ 1, sP ] = M̂0X̂[n, sP ] + M̂1∆X̂[n, sK ].ψ (2)

After not too difficult transformations, a difference
equation of the second order can be obtained for
x[n, sp] from the matrix equation (2):

x[n+ 2, sP ]− 2x[n+ 1, sP ] cosµ+ x[n, sP ]

=
√
βPβK ∆x′[n+ 1, sK ] sin(µ− η)

+
√
βPβK ∆x′[n, sK ] sin η , ψ (3)

where βP and βK are the transverse betatron ampli-
tude functions in the PU and DK locations, µ = 2πQ
is a betatron phase advance per revolution in trans-
verse plane, Q is the number of unperturbed betatron
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oscillations per revolution, and η is the betatron phase
advance from PU to DK.

Equation (3) fully describes the particle transverse
dynamics in an accelerator with the feedback system
considered.

2.2 Transfer Function

As rule, a transfer function for a feedback loop is a
linear one. In this case the ∆x′[n, sK ] value is assumed
to be proportional to the beam deviation x[n, sP ] in
the pick-up location:

∆x′[n, sK ] =
g

√
βPβK

x[n, sP ], (4)

where g is the gain of feedback loop. Substituting for
∆x′ from (4) into (3), we obtain

x[n+ 2, sP ]− 2x[n+ 1, sP ] cosµ+ x[n, sP ] =

= g x[n+ 1, sP ] sin(µ− η) + g x[n, sP ] sin η . (5)

Equation (5) is a linear equation. It can be solved us-
ing standard methods, for example, Z−transform [5]:

x̃(z) =
∞∑
n=0

x[n, s]z−n ;

x[n, s] =
∑
k

Res
[
x̃(zk)z

n−1
k

]
. (6)

The approximate solution of (5) for small g is

x[n, sP ] ' a0 exp
(g

2
n sin η

)
cos(µn+ φ0), (7)

where a0 and φ0 are constants depending on initial
conditions.

If transfer function is nonlinear, then the kick value
depends on odd powers of x only. Therefore, for ∆x′

we can write:√
βPβK ∆x′[n, sK ] = g f(x[n, sP ]) ; (8)

f(x) = x− g3x
3 − g5x

5 − . . . . (9)

Substituting for ∆x′ from (8) into (3) yields

x[n+ 2, sP ]− 2x[n+ 1, sP ] cosµ+ x[n, sP ]

= g f(x[n+ 1, sP ]) sin(µ− η)

+ g f(x[n, sP ]) sin η , (10)

Equation (10) is a basic equation for studying beam
dynamics with nonlinear transfer function for a feed-
back loop. This equation is good for numerical calcu-
lations and is convenient for analytical work.

Nonlinear transfer functions mentioned in the intro-
duction can be provided with combination of gi-values
in (9). The analytical results are further shown only
for a cubic term in order to simplify final expressions.
It will be also supposed that the phase advance η from
the PU to the DK is equal to an odd number of π/2
radians. Hence sin η = 1 and the best damping is re-
alised.

2.3 Solution (First Approximation)

The gain g in (10) for feedback realized is a small val-
ue. Normally, g ≈ 0.01 for instability damper systems
and g ≈ 0.1 for damping of injection errors. Since g is
small, equation (10) is weakly nonlinear, and a number
of perturbation methods are available for the determi-
nation of approximate solutions of this equation. The
Krylov–Bogoliubov method [4] is used bellow.

When g = 0, the solution of (10) can be written as

x[n, sP ] = a cos(µn+ φ) = a cosψn , (11)

ψn = µn+ φ ,

where a and φ are constants. When g 6= 0, the solution
of (10) can still be expressed in the form (11), provided
that a and φ are considered to be functions of n rather
than constants.

In accordance with the Krylov–Bogoliubov method,
the solution of (10) can be written as a series of the
form

x[n, sP ] = an cosψn +
∞∑
m=1

gmξm(an, ψn) , (12)

where ξi is unknown functions of full amplitude an
and periodical functions of ψn. Functions ξi are small
corrections of the main harmonic an cosψn. The order
of these corrections is given by small parameter g. The
amplitude and phase are the functions of an. Hence,
for their derivations we can write:

dan

dn
= gf1(an) + g2f2(an) + . . . , (13)

dψn

dn
= µ+ gχ1(an) + g2χ2(an) + . . . . (14)

Functions ξm as the periodical functions of ψn can be
expanded into the Fourier series:

ξm(an, ψn) = νm0(an)

+
∞∑
k=2

[νmk(an) cos kψn + γmk(an) sin kψn] ,

where νm1 = γm1 = 0, because amplitude an is the full
amplitude of the main (first) harmonic of oscillations.
For the left-hand side of (10) we expand all values into
a Taylor series taking into account (13) and (14). The
first approximation of these expansions is:

l.h.s. ' gf1(an)[cos(ψn + 2µ)− cosψn]

+ gχ1(an)an[sinψn − sin(ψn + 2µ)]

+ gξ1(an, ψn+2)− 2g cosµ ξ1(an, ψn+1)

+ gξ1(an, ψn) . (15)

For a first level of approximation, the right-hand side
of (10) is determined by zero level of approximation.
Substituting for x from (12) into (10) yields

r.h.s. = g f(an cosψn)

− g f(an cos(ψn + µ)) cosµ . (16)
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Equating coefficients of Fourier series in (15) and (16)
yields for main harmonic and for cubic nonlinearity:

−f1(an) =
1

2
an −

3g3
8

a3n ; (17)

χ1(an) = 0 . (18)

For the high order harmonics, a linear equation is ob-
tained

ξ1(an, ψn+2)− 2 cosµ ξ1(an, ψn+1) + ξ1(an, ψn)

= −
g3

8
a3n (cos 3ψn − cos(3ψn + 4µ)) . (19)

This linear equation can be solved using Z−transform.

3 RESULTS

Equation (17) yields the amplitude damping rate
per turn. In accordance with (13) we can write:

dan = −
g

2

(
an −

3g3
4

a3n

)
dn . (20)

Performing the integration in (20) with g3 = 0 we
obtain

an = a0 exp
(
−
g

2
n
)
. (21)

This expression for an coincides with the well known
solution of the linear equation (see formula (7) for
sin η = 1).

Performing the integration in (20) with g3 6= 0, we
obtain the amplitude dependence on turns:

an =
a0 exp(−gn/2)√

1 + (3g3a20/4)(exp(−gn)− 1)
. (22)

The formula (22) for amplitude dependence coincides
with the well known result for amplitude solution of
Rayleigh’s equation

ẍ+ ω20x = ε(ẋ− λẋ3) .

Taking into account (18), we get from (14) for the
phase of oscillations:

ψn = µn+ φ0 . (23)

Hence to the first level of approximation, the frequency
is not affected by the damping, while the amplitude
decreases in accordance with dependence (22).

It is clear from (19), that the cubic kick excites the
third harmonic of oscillations:

ξ1 = −
g3b

8
a3n sin 3µn , (24)

where constant b < 1.
Thus, the first approximation to the solution of (10)

is

x[n, sP ] = an cos(µn+ φ0)−
gg3b

8
a3n sin 3µn , (25)

where the amplitude an of oscillations is given by (22)
and µ = 2πQ.

The asymptotic result for linear-to-nonlinear first
harmonic amplitude ratio in accordance with (21) and
(22) is

lim
n→∞

an(linear)

an(nonlinear)
=

√
1−

3g3
4

a20 . (26)

Therefore, when g3 > 0, the kick value of feedback
with a cubic nonlinearity for transfer function is lower
than for a linear gain (g3 = 0), and the amplitude
decreases faster with time for a linear system. When
g3 < 0, the amplitude decreases faster for a nonlinear
system. This effect can be used for a faster damping
of injection errors.

The same conclusion for instability damping can
hardly be true. Indeed, an increment of instability
and a decrement of feedback are the effects of linear
term forces, and these values can appear as arguments
of exponential expressions. But it is clear from (25)
and (22) that nonlinear term g3 is not affected by the
exponent terms for an at the first level of approxima-
tion. Hence, the instability damping by feedback with
a nonlinear transfer function should be further stud-
ied.

4 CONCLUSION

The general approach demonstrated above can be ef-
fectively used for studying TFS with a nonlinear trans-
fer function. It gives analytical approximate solutions
to calculate the damping time and other parameters
of the particle motion.
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