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Abstract

The present paper proposes a method to solve Poisson’s
equation in a wavelet basis. To best knowledge this is the
first approach to space charge computations that makes use
of wavelets. It outlines an efficient discretisation of the dis-
continuous charge distribution by automatically customis-
ing the computational mesh. This is done by including
wavelets of the next higher level of resolution if their co-
efficients are above a certain threshold. For the presented
algorithm, the CPU-time scales linearly with the number
of mesh points. Moreover, it allows non-uniform grids and
does not require any symmetry of the particle distribution.

The motivation for developing the wavelet technique for
space-charge simulations in synchrotrons arose from the
need to understand the influence of discontinuous charge
distributions during multi-turn injection into the CERN
PS Booster. The particle distribution during injection is
smooth almost everywhere, except for small regions with
sharp discontinuities caused by beam loss on the injection
septum. Such locally discontinuous functions have sparse
representations in a wavelet basis allowing fast computa-
tions. Furthermore wavelets allow the detailed examina-
tion of the steep gradient regions without causing com-
putational overheads elsewhere. Finally, as the beam dis-
tribution evolves in time and loses its discontinuities, the
analysing wavelet may be dynamically changed to best
match the new situation.

1 INTRODUCTION

The main concern of beam dynamics codes taking into ac-
count space-charge effects is an efficient solution of the
Poisson equation. Efficient means fast in terms of com-
puting time and precise in terms of quality of the appro-
ximation to the true solution. Powerful methods that scale
linearly with system size and allow the use of different
levels of resolution in different regions of space are there-
fore highly desirable. These were the main motivations for
watching out for new algorithmic trends in computational
physics and wavelets, successfully used in various fields
of science like geophysics, medicine and biology [1], ap-
peared as promising candidates to fulfil these expectations.

2 WAVELETS AND
MULTI-RESOLUTION

The usefulness of wavelets for solving partial differential
equations relies on the definition of a Multi-Resolution
Analysis (MRA) [2]. An MRA is based on two funda-
mental concepts: nested subspaces and orthonormal bases.
The first permits decomposition of information into differ-
ent scales, the second allows stable and fast algorithms. On
top of these there is a third ingredient, the invariance of the
basis functions under translations (in each subspace) and
dilation (from one subspace to another).

Wavelets are orthonormal functions which are charac-
terised by the translation and dilation of a single function
 (x). This function generates a family of basis functions

 mk(x) = 2m=2 (2mx� k); m; k 2 Z ; (1)

whereZ is the set of integer numbers. Any function can
be expanded within this level of resolution. Therefore any
functionf(x) in L2(R), the space of real square integrable
functions, may be represented as

f(x) �
X

m

X

k

dmk mk(x); (2)

with constant coefficientsdmk. This expansion becomes
more accurate if one goes to a higher level of resolution,
i.e. if one increasesm, and becomes exact for the limiting
casem!1.

Wavelets are derived from scaling functions, that is func-
tions that satisfy the recursion

�(x) =
X

k

ak�(2x� k) (3)

in which a finite number of the filter coefficientsak are
non-zero. AnyL2(R) functionf(x) may be approximated
at resolutionm by

Pmf(x) =
X

k

cmk�mk(x) ; k 2 Z ; (4)

wherePmf(x) represents the projection of the function
f(x) onto the space of scaling functions at resolutionm.

�mk(x) = 2m=2�(2mx� k) ; k 2 Z ; (5)

is a scaling function basis for the scalem approximation of
L2(R) and the set of approximationsPmf(x) constitutes a
multi-resolution representation of the functionf(x).
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In two dimensions square integrable functionsf(x; y)
of L2(R2) may be expressed in terms of the orthonormal
basis

 mk(x) nl(y); (6)

with m; k; n; l 2 Z . This is simply the tensor product of
two one-dimensional bases in the two coordinate directions
x andy.

3 GRID GENERATION

Instead of immediately solving Poisson’s equation in a
wavelet basis, it is possible to optimise the finite difference
method using wavelet based dyadic refinement of the com-
putational grid. Considering the horizontal projection of
the beam as scraped during injection (Fig. 1), it appears rea-
sonable to invest more computing effort into the steep gra-
dient regions. This corresponds to representing the charge
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Figure 1: Simulation of the beam at injection into the PSB
and its one-dimensional projection. The septum plate in-
troduces a distinct cut. On the bottom of the left figure
the equidistant and the wavelet optimised grid is displayed.
Daubechies second order wavelet was used for the mesh
refinement. The saving in computing time is particularly
significant for beams that are small compared to the vac-
uum vessel.

distribution to be discretised in a wavelet basis. The level
of resolution is determined by the number of wavelet co-
efficients. The two-dimensional generalisation consists in
applying the one-dimensional refinement first to all rows,
and then to all columns of a two-dimensional mesh.

The advantage of the wavelet transform as compared
to the Fourier transform in the case of mesh refinement
for discontinuous charge distributions becomes evident in
Fig. 2, where the cumulative energy of the development is
displayed. This is a measure for the quality of the approxi-
mation to the initial function in the considered basis. Unity
corresponds to exact representation.

As the beam evolves in the machine the cut in its profile
smears out and the analysing wavelet may be adapted to the
more continuous distribution. In Fig. 3 the discontinuous
second order Daubechies wavelet used for analysing the
initial beam distribution is presented. The smooth eighth
order Daubechies wavelet is better suited for the later con-
tinuous charge distribution.
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Figure 2: The cumulative energy plot displays the quality
of the approximation as a function of the number of co-
efficients taken into account. Discontinuous functions can
be expanded into a wavelet basis (continuous curves) with
much higher precision in the steep gradient regions than a
Fourier development (dashed curves). The second graph,
showing the reconstruction of the charge density of Fig. 1
confirms this.

Figure 3: The Daubechies wavelets of order two 2(x) and
eight 8(x) used for approximating the early discontinuous
and late continuous beam shape.

4 WAVELET-GALERKIN METHOD

The Galerkin method is a special case of the method of
weighted residues which expands the solutionu of a partial
differential equationLu = f , withL = r2 for the Poisson
equation, into a series of linear independent basis functions.
The residueR = L~u� f 6= 0 of the approximate solution
~u is then minimised introducing weighting functions. The
method is called Galerkin method when the same functions
are used as basis and weighting functions.

Wavelets have several properties that are useful for rep-
resenting solutions of partial differential equations [3]. The
orthogonality, compact support and exact representation of
polynomials of a fixed degree allow the efficient and stable
calculation of regions with strong gradients or oscillations.
In beam physics, regions with strong gradients appear dur-
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ing multi-turn injection, when the beam hits the septum and
suffers losses. This results in a smooth Gaussian beam dis-
tribution everywhere, except at the position of the septum
cut, where a discontinuity is introduced (cf. Fig.1).

For such a discontinuous charge distribution� consider
the Poisson problem

r
2u = �: (7)

The wavelet-Galerkin approximation to the potentialu is

u(x; y) =
X

k

X

l

~ckl2
m=2�(2mx� k)2m=2�(2my � l)

(8)
with k; l 2 Z . The integer numberm fixes the level of
resolution of the approximation. In wavelet space the po-
tentialu is defined by its wavelet coefficients~ckl and may
be translated to physical space using the Fast Fourier Trans-
form (FFT). Therefore one needs to express the wavelet ex-
pansion as a discrete convolution. SubstitutingX = 2mx
andY = 2my gives

U(X;Y ) = u(x; y) =
X

k

X

l

ckl�(X � k)�(Y � l) (9)

with ckl = 2m~ckl. A scale dependent discretisation of
u(x; y) is obtained by focusing on the values ofu at the
dyadic pointsx = 2�mX andy = 2�mY , whereX , Y
are allowed to take integer values only. ThusU(X;Y ) is
discretised on a rectangular meshnx�ny by

Uij = U(i�X; j�Y ) (10)

wherei = 0; 1; 2; : : : ; nx�1, j = 0; 1; 2; : : : ny�1. Writ-
ten in matrix form one obtains

U = �nxc�
T
ny
: (11)

This gives an easy relation betweenU and its wavelet co-
efficientsc.

An analogous expression is found for the inhomogene-
ity � of the Poisson equation. Inserting both into Eq. (7)
one obtains, after some matrix manipulations, the solution
in wavelet space that is transformed to the ordinary space
solutionU using the inverse two-dimensional FFT.

5 BOUNDARY CONDITIONS

Boundary conditions may be taken into account using the
capacitance matrix method [4]. In two-dimensional space-
charge computations it is required to solve problem (7) on
a surfaceS with Dirichlet boundary conditions

u = uC(x; y) (12)

on the boundaryC=@S that is the vacuum chamber wall.
The solution may be found by adding an unknown function
w(x; y) to v(x; y)

u = v + w : (13)

Sincer2v = f in S, w must satisfy

r
2w = 0 (14)

in S, whereas, on the boundary curveC, w must be such
as to makeu the imposed boundary conditions. This
is achieved by distributing image sources along a closed
curveC1, enclosing the regionS. The convolution

w = G(x; y) �R1(x; y) (15)

=

Z
C1

R0(p; q) G(x � p; y � q) dC1; (16)

determines the solution to the boundary source problem,
where the integral extends over all the boundary points
(p; q) 2 C1. G(x; y) is the Greens function of the differ-
ential equation and may be computed using the method de-
veloped in Section 4. Discretisation leads again to a matrix
system that can be solved forR and finallyw. The solution
u is obtained from Eq. (13).

6 CONCLUSIONS

A code is being developed to study space charge problems
in the PS Booster. It showed that wavelets provide a natural
mechanism for grid selection allowing the computational
efforts to be concentrated in regions of steep gradients, di-
luting parts of the computational domain where the solution
is very smooth.

The wavelet method appears to be a powerful numeri-
cal tool for the fast and accurate solution of partial differ-
ential equations. Although the solution requires slightly
more computational effort than the finite difference solu-
tion, the gain in accuracy, particularly with higher order
wavelets, by far compensates for the increase in computer
time. Moreover wavelets have the capability of represent-
ing solutions at different levels of resolution, which makes
them particularly useful for hierarchical solutions to prob-
lems.
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