
BOUNDARY INTEGRAL EQUATION APPROACH TO TIME DOMAIN CALCU-

LATION OF ACCELERATOR ELECTROMAGNETIC FIELDS

H.Kawaguchi and M.Isoda

Div. Systems and Information Eng., Graduate School of Eng., Hokkaido University

Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628  Japan

Abstract
This paper presents an accelerator wake fields simula-

tion by a boundary integral equation method.  It is shown
that though there are some possibilities for formulation,
available one is uniquely determined to specify the prob-
lem.  As an example of  numerical simulations by the bound-
ary integral equation, transient electromagnetic fields pro-
duced by relativistic particles around a single disk structure
are treated in this paper.  And the result is compared with
that of FIT method.

1 INTRODUCTION

A boundary integral equation approach to time domain
calculations of accelerator electromagnetic fields gives us
possibilities of analytical treatment of smooth trajectories
of the relativistic charged particles and their Lienard-
Wiechert fields.  This is suitable for treatments of the
cocherent synchrotron radiation and other phenomena of
strong interactions between particles and fields.  At the same
time, it is however known that this approach has the fol-
lowing serious difficulties in practical use,

- often happened numerical instabilities
- too much storage memory & CPU time

These difficulties themselves are not only for wake fields
calculations but also for general electromagnetic wave and
still remain as one of  biggest problems in electromagnetic
fields simulation technology even now. [1-3]  For spacial
cases, those difficulties can be removed by individual de-
vices depending on each case.  For example, in thin wire
scattering phenomena,a analytical evaluation of the inte-
gral equation is partially possible, it can remove noisy fac-
tor from the integral equation and produces stable time do-
main solutions.[4] We discuss wake fields around torus to-
pology conductors in this paper.  To introduce this assump-
tion, concrete scheme can be uniquely determined.

2 FORMULATION

Governing equations of the wake fields are Maxwell’s
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equations but here we use the inhomogeneous wave equa-
tion for the scalar and vector potentials because the wave
equations match to the boundary integral formulation.  One
of the biggest problems in use of the potentials for numeri-
cal simulations is the boundary conditions.  As to perfect
conductors, the following conditions are possible, [5]

φ =  0 (1)

A =  0 (2)
these conditions are derived from a kind of gauge transfor-
mation, accordingly the boundary integral equation becomes
as follows,

 φ = φ LW +
1
4π

dS'

x - x '

∂ φ
∂n τ

+
∂G
∂t (3)

A = A LW +
1

4π
dS'

x - x '

∂A t

∂n τ
-  G (4)

where the unknowns, the normal derivatives of the poten-
tials in the integrands are evaluated at the retarded time 
=  t - | x - x’|/c and then the unknowns at different times are
independent each others.  

LW
  and A

LW
 denote the Lienard-

Wiechert potentials and G is a function which is generated
at the gauge transformation and does not contribute field
strength E and B.  For the conditions (1) and (2), the elec-
tromagnetic field strengths directly related to the normal
derivative of the potentials as follows,

∂ φ
∂n

 = -E • n =
σ
ε 0

(5)

∂A
∂n

n = B n =
K

ε 0c2
n

(6)

where n is a unit normal vector of the surface,  and K  are
the surface charge and current density.  Therefore we have
one more equation for the normal derivative of the poten-
tials, the surface charge conservation law,

∂
∂t

∂ φ
∂n

 + c2 div
∂A t

∂n
 =  0 (7)

One possibility to delete the uncertain factor G in Eqs(3)
and (4) is making field strength as follows,
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(8)
This is just same equation as the standard MoM integral
equation.  For the axisymmetric system, the number of un-
knowns are two, absolute values of / n and A

t
 /

n or   and K  for each nodes and we now have twoσ
equations (7) and (8).  Therefore solving the time domain
problem is basically possible.  One however should care-
fully consider on the calculation of  K  .  For the conductor
which has torus topology, the above equations can not
uniquely determine the surface current, because of arbitrari-
ness of constant component (see Fig.1).  This situation is
included in the following fact.  To do numerical simulation,
we have to discretize the boundary integral equation (8) as
follows,

E = E LW +
j, k

H ' i j k
∂At j

∂n t - k ∆t

j, k
G ' i j k

∂φ j

∂n t - k ∆t

(9)

then the arbitrariness of K  appears as singularity of the ma-
trix H in (9).  Accordingly, we can calculate —  to use the
integral equation and K  should be determined by the conti-
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Fig.2  configuration of discretized boundary integaral equation

K

Fig.1  surface current on torus conductor

nuity equation (7).  Then the arbitrariness appears again as
the constant component of K  or A

t
 / n  because div-

oparator deletes constant poloidal component of K .  Here
since we assumed that the material is the perfect conductor,
the total poloidal component current should be zero because
there are no magnetic field inside the material.

poloidal

∂A t

∂n
dl  =  0 (10)

To use this condition, the arbitrariness can be removed.

3  NUMERICAL SIMULATION

Discretized boundary integral equation has the structure
of Fig.2 because of the property of the retarded time.  Many
matrices should be stored during the computing and too
much memory is required for the computer.  In this paper,
we treat the transient electromagnetic fields produced by
the charged particle around the single disk .  Numerical
model is shown in Fig.3.  In this model, the number of the
matrices is 74 and the size is 72x72.  The bunch length and
velocity are taken to be 3mm and 99.994 percents of the
light velocity, respectively.  Surface current behavior in time
domain is shown in Fig.4.  Simulation result by FIT method
for the same parameters is shown Fig.5.  The surface cur-
rent behaviors are almost coincided each other but un-neg-
ligible differences still exist.  Electric field profile in the
cross-section at the time marked at Fig.6 and the wake po-
tential is shown in Fig.7.

4  SUMMARY

This paper has presented an accelerator wake fields simu-
lation by a boundary integral equation method.  It has been
shown that though there are some possibilities for formula-
tion, available one is uniquely determined to specify the
problem.  As an example of  numerical simulations by the
boundary integral equation, transient electromagnetic fields
produced by relativistic particles around a single disk struc-
ture have been treated in this paper.  It has been shown that
the surface current behaviors are almost coincided with that
of FIT method but un-negligible differences still exist.
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Fig.4  poloidal surface current on single disk (BEM) Fig.5  poloidal surface current on single disk (FIT)
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Fig.3  numerical model of single disk
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