CLHEP 2.0.4.7 Reference Documentation
   
CLHEP Home Page     CLHEP Documentation     CLHEP Bug Reports

RandBinomial.cc

Go to the documentation of this file.
00001 // $Id: RandBinomial.cc,v 1.3.4.2 2005/04/15 16:32:53 garren Exp $
00002 // -*- C++ -*-
00003 //
00004 // -----------------------------------------------------------------------
00005 //                             HEP Random
00006 //                        --- RandBinomial ---
00007 //                      class implementation file
00008 // -----------------------------------------------------------------------
00009 
00010 // =======================================================================
00011 // John Marraffino - Created: 12th May 1998
00012 // M Fischler     - put and get to/from streams 12/10/04
00013 // M Fischler         - put/get to/from streams uses pairs of ulongs when
00014 //                      + storing doubles avoid problems with precision 
00015 //                      4/14/05
00016 //
00017 // =======================================================================
00018 
00019 #include "CLHEP/Random/RandBinomial.h"
00020 #include "CLHEP/Random/defs.h"
00021 #include "CLHEP/Random/DoubConv.hh"
00022 #include <algorithm>    // for min() and max()
00023 #include <cmath>        // for exp()
00024 
00025 using namespace std;
00026 
00027 namespace CLHEP {
00028 
00029 std::string RandBinomial::name() const {return "RandBinomial";}
00030 HepRandomEngine & RandBinomial::engine() {return *localEngine;}
00031 
00032 RandBinomial::~RandBinomial() {
00033   if ( deleteEngine ) delete localEngine;
00034 }
00035 
00036 RandBinomial::RandBinomial(const RandBinomial& right)
00037  : defaultN(right.defaultN), defaultP(right.defaultP)
00038 {;}
00039 
00040 double RandBinomial::shoot( HepRandomEngine *anEngine, long n,
00041                                                           double p ) {
00042   return genBinomial( anEngine, n, p );
00043 }
00044 
00045 double RandBinomial::shoot( long n, double p ) {
00046   HepRandomEngine *anEngine = HepRandom::getTheEngine();
00047   return genBinomial( anEngine, n, p );
00048 }
00049 
00050 double RandBinomial::fire( long n, double p ) {
00051   return genBinomial( localEngine, n, p );
00052 }
00053 
00054 void RandBinomial::shootArray( const int size, double* vect,
00055                             long n, double p )
00056 {
00057    int i;
00058 
00059    for (i=0; i<size; ++i)
00060      vect[i] = shoot(n,p);
00061 }
00062 
00063 void RandBinomial::shootArray( HepRandomEngine* anEngine,
00064                             const int size, double* vect,
00065                             long n, double p )
00066 {
00067    int i;
00068 
00069    for (i=0; i<size; ++i)
00070      vect[i] = shoot(anEngine,n,p);
00071 }
00072 
00073 void RandBinomial::fireArray( const int size, double* vect)
00074 {
00075    int i;
00076 
00077    for (i=0; i<size; ++i)
00078      vect[i] = fire(defaultN,defaultP);
00079 }
00080 
00081 void RandBinomial::fireArray( const int size, double* vect,
00082                            long n, double p )
00083 {
00084    int i;
00085 
00086    for (i=0; i<size; ++i)
00087      vect[i] = fire(n,p);
00088 }
00089 
00090 /*************************************************************************
00091  *                                                                       *
00092  *  StirlingCorrection()                                                 *
00093  *                                                                       *
00094  *  Correction term of the Stirling approximation for log(k!)            *
00095  *  (series in 1/k, or table values for small k)                         *
00096  *  with long int parameter k                                            *
00097  *                                                                       *
00098  *************************************************************************
00099  *                                                                       *
00100  * log k! = (k + 1/2)log(k + 1) - (k + 1) + (1/2)log(2Pi) +              *
00101  *          StirlingCorrection(k + 1)                                    *
00102  *                                                                       *
00103  * log k! = (k + 1/2)log(k)     -  k      + (1/2)log(2Pi) +              *
00104  *          StirlingCorrection(k)                                        *
00105  *                                                                       *
00106  *************************************************************************/
00107 
00108 static double StirlingCorrection(long int k)
00109 {
00110   #define   C1               8.33333333333333333e-02     //  +1/12 
00111   #define   C3              -2.77777777777777778e-03     //  -1/360
00112   #define   C5               7.93650793650793651e-04     //  +1/1260
00113   #define   C7              -5.95238095238095238e-04     //  -1/1680
00114 
00115   static double  c[31] = {   0.0,
00116                              8.106146679532726e-02, 4.134069595540929e-02,
00117                              2.767792568499834e-02, 2.079067210376509e-02,
00118                              1.664469118982119e-02, 1.387612882307075e-02,
00119                              1.189670994589177e-02, 1.041126526197209e-02,
00120                              9.255462182712733e-03, 8.330563433362871e-03,
00121                              7.573675487951841e-03, 6.942840107209530e-03,
00122                              6.408994188004207e-03, 5.951370112758848e-03,
00123                              5.554733551962801e-03, 5.207655919609640e-03,
00124                              4.901395948434738e-03, 4.629153749334029e-03,
00125                              4.385560249232324e-03, 4.166319691996922e-03,
00126                              3.967954218640860e-03, 3.787618068444430e-03,
00127                              3.622960224683090e-03, 3.472021382978770e-03,
00128                              3.333155636728090e-03, 3.204970228055040e-03,
00129                              3.086278682608780e-03, 2.976063983550410e-03,
00130                              2.873449362352470e-03, 2.777674929752690e-03,
00131   };
00132   double    r, rr;
00133 
00134   if (k > 30L) {
00135     r = 1.0 / (double) k;  rr = r * r;
00136     return(r*(C1 + rr*(C3 + rr*(C5 + rr*C7))));
00137         }
00138         else  return(c[k]);
00139 }
00140 
00141 double RandBinomial::genBinomial( HepRandomEngine *anEngine, long n, double p )
00142 {
00143 /******************************************************************
00144  *                                                                *
00145  *     Binomial-Distribution - Acceptance Rejection/Inversion     *
00146  *                                                                *
00147  ******************************************************************
00148  *                                                                *
00149  * Acceptance Rejection method combined with Inversion for        *
00150  * generating Binomial random numbers with parameters             *
00151  * n (number of trials) and p (probability of success).           *
00152  * For  min(n*p,n*(1-p)) < 10  the Inversion method is applied:   *
00153  * The random numbers are generated via sequential search,        *
00154  * starting at the lowest index k=0. The cumulative probabilities *
00155  * are avoided by using the technique of chop-down.               *
00156  * For  min(n*p,n*(1-p)) >= 10  Acceptance Rejection is used:     *
00157  * The algorithm is based on a hat-function which is uniform in   *
00158  * the centre region and exponential in the tails.                *
00159  * A triangular immediate acceptance region in the centre speeds  *
00160  * up the generation of binomial variates.                        *
00161  * If candidate k is near the mode, f(k) is computed recursively  *
00162  * starting at the mode m.                                        *
00163  * The acceptance test by Stirling's formula is modified          *
00164  * according to W. Hoermann (1992): The generation of binomial    *
00165  * random variates, to appear in J. Statist. Comput. Simul.       *
00166  * If  p < .5  the algorithm is applied to parameters n, p.       *
00167  * Otherwise p is replaced by 1-p, and k is replaced by n - k.    *
00168  *                                                                *
00169  ******************************************************************
00170  *                                                                *
00171  * FUNCTION:    - btpec samples a random number from the binomial *
00172  *                distribution with parameters n and p  and is    *
00173  *                valid for  n*min(p,1-p)  >  0.                  *
00174  * REFERENCE:   - V. Kachitvichyanukul, B.W. Schmeiser (1988):    *
00175  *                Binomial random variate generation,             *
00176  *                Communications of the ACM 31, 216-222.          *
00177  * SUBPROGRAMS: - StirlingCorrection()                            *
00178  *                            ... Correction term of the Stirling *
00179  *                                approximation for log(k!)       *
00180  *                                (series in 1/k or table values  *
00181  *                                for small k) with long int k    *
00182  *              - anEngine    ... Pointer to a (0,1)-Uniform      * 
00183  *                                engine                          *
00184  *                                                                *
00185  * Implemented by H. Zechner and P. Busswald, September 1992      *
00186  ******************************************************************/
00187 
00188 #define C1_3     0.33333333333333333
00189 #define C5_8     0.62500000000000000
00190 #define C1_6     0.16666666666666667
00191 #define DMAX_KM  20L
00192 
00193   static long int      n_last = -1L,  n_prev = -1L;
00194   static double        par,np,p0,q,p_last = -1.0, p_prev = -1.0;
00195   static long          b,m,nm;
00196   static double        pq, rc, ss, xm, xl, xr, ll, lr, c,
00197                                  p1, p2, p3, p4, ch;
00198 
00199   long                 bh,i, K, Km, nK;
00200   double               f, rm, U, V, X, T, E;
00201 
00202   if (n != n_last || p != p_last)                 // set-up 
00203         {
00204          n_last = n;
00205          p_last = p;
00206          par=min(p,1.0-p);
00207          q=1.0-par;
00208          np = n*par;
00209 
00210 // Check for invalid input values
00211 
00212          if( np <= 0.0 ) return (-1.0);
00213 
00214          rm = np + par;
00215          m  = (long int) rm;                      // mode, integer 
00216          if (np<10)
00217         {
00218          p0=exp(n*log(q));                        // Chop-down
00219          bh=(long int)(np+10.0*sqrt(np*q));
00220          b=min(n,bh);
00221         }
00222          else
00223                  {
00224         rc = (n + 1.0) * (pq = par / q);          // recurr. relat.
00225         ss = np * q;                              // variance  
00226         i  = (long int) (2.195*sqrt(ss) - 4.6*q); // i = p1 - 0.5
00227         xm = m + 0.5;
00228         xl = (double) (m - i);                    // limit left 
00229         xr = (double) (m + i + 1L);               // limit right
00230         f  = (rm - xl) / (rm - xl*par);  ll = f * (1.0 + 0.5*f);
00231         f  = (xr - rm) / (xr * q);     lr = f * (1.0 + 0.5*f);
00232         c  = 0.134 + 20.5/(15.3 + (double) m);    // parallelogram
00233                                                   // height
00234         p1 = i + 0.5;
00235         p2 = p1 * (1.0 + c + c);                  // probabilities
00236         p3 = p2 + c/ll;                           // of regions 1-4
00237         p4 = p3 + c/lr;
00238                  }
00239   }
00240   if (np<10)                                      //Inversion Chop-down
00241          {
00242           double pk;
00243 
00244           K=0;
00245           pk=p0;
00246           U=anEngine->flat();
00247           while (U>pk)
00248                 {
00249                  ++K;
00250                  if (K>b)
00251                          {
00252                 U=anEngine->flat();
00253                 K=0;
00254                 pk=p0;
00255                          }
00256                  else
00257                          {
00258                 U-=pk;
00259                 pk=(double)(((n-K+1)*par*pk)/(K*q));
00260                          }
00261                 }
00262           return ((p>0.5) ? (double)(n-K):(double)K);
00263          }
00264 
00265   for (;;)
00266         {
00267          V = anEngine->flat();
00268          if ((U = anEngine->flat() * p4) <= p1)  // triangular region
00269                 {
00270                  K=(long int) (xm - U + p1*V);
00271         return ((p>0.5) ? (double)(n-K):(double)K);  // immediate accept
00272                 }
00273          if (U <= p2)                                // parallelogram
00274                 {
00275                  X = xl + (U - p1)/c;
00276                  if ((V = V*c + 1.0 - fabs(xm - X)/p1) >= 1.0)  continue;
00277                  K = (long int) X;
00278                 }
00279          else if (U <= p3)                           // left tail
00280                 {
00281                  if ((X = xl + log(V)/ll) < 0.0)  continue;
00282                  K = (long int) X;
00283                  V *= (U - p2) * ll;
00284                 }
00285          else                                         // right tail
00286                 {
00287                  if ((K = (long int) (xr - log(V)/lr)) > n)  continue;
00288                  V *= (U - p3) * lr;
00289                 }
00290 
00291  // acceptance test :  two cases, depending on |K - m|
00292          if ((Km = labs(K - m)) <= DMAX_KM || Km + Km + 2L >= ss)
00293           {
00294 
00295  // computation of p(K) via recurrence relationship from the mode
00296                 f = 1.0;                              // f(m)
00297                 if (m < K)
00298          {
00299           for (i = m; i < K; )
00300                 {
00301                 if ((f *= (rc / ++i - pq)) < V)  break;  // multiply  f
00302                 }
00303          }
00304                 else
00305          {
00306           for (i = K; i < m; )
00307                  {
00308                   if ((V *= (rc / ++i - pq)) > f)  break; // multiply  V
00309                  }
00310          }
00311                 if (V <= f)  break;                       // acceptance test
00312          }
00313   else
00314          {
00315 
00316  // lower and upper squeeze tests, based on lower bounds for log p(K)
00317                 V = log(V);
00318                 T = - Km * Km / (ss + ss);
00319                 E =  (Km / ss) * ((Km * (Km * C1_3 + C5_8) + C1_6) / ss + 0.5);
00320                 if (V <= T - E)  break;
00321                 if (V <= T + E)
00322                  {
00323         if (n != n_prev || par != p_prev)
00324          {
00325           n_prev = n;
00326           p_prev = par;
00327 
00328           nm = n - m + 1L;
00329           ch = xm * log((m + 1.0)/(pq * nm)) +
00330                StirlingCorrection(m + 1L) + StirlingCorrection(nm);
00331          }
00332         nK = n - K + 1L;
00333 
00334  // computation of log f(K) via Stirling's formula
00335  // final acceptance-rejection test
00336         if (V <= ch + (n + 1.0)*log((double) nm / (double) nK) +
00337                  (K + 0.5)*log(nK * pq / (K + 1.0)) -
00338                  StirlingCorrection(K + 1L) - StirlingCorrection(nK))  break;
00339                 }
00340          }
00341   }
00342   return ((p>0.5) ? (double)(n-K):(double)K);
00343 }
00344 
00345 std::ostream & RandBinomial::put ( std::ostream & os ) const {
00346   int pr=os.precision(20);
00347   std::vector<unsigned long> t(2);
00348   os << " " << name() << "\n";
00349   os << "Uvec" << "\n";
00350   t = DoubConv::dto2longs(defaultP);
00351   os << defaultN << " " << defaultP << " " << t[0] << " " << t[1] << "\n";
00352   os.precision(pr);
00353   return os;
00354 #ifdef REMOVED
00355   int pr=os.precision(20);
00356   os << " " << name() << "\n";
00357   os << defaultN << " " << defaultP << "\n";
00358   os.precision(pr);
00359   return os;
00360 #endif
00361 }
00362 
00363 std::istream & RandBinomial::get ( std::istream & is ) {
00364   std::string inName;
00365   is >> inName;
00366   if (inName != name()) {
00367     is.clear(std::ios::badbit | is.rdstate());
00368     std::cerr << "Mismatch when expecting to read state of a "
00369               << name() << " distribution\n"
00370               << "Name found was " << inName
00371               << "\nistream is left in the badbit state\n";
00372     return is;
00373   }
00374   if (possibleKeywordInput(is, "Uvec", defaultN)) {
00375     std::vector<unsigned long> t(2);
00376     is >> defaultN >> defaultP;
00377     is >> t[0] >> t[1]; defaultP = DoubConv::longs2double(t); 
00378     return is;
00379   }
00380   // is >> defaultN encompassed by possibleKeywordInput
00381   is >> defaultP;
00382   return is;
00383 }
00384 
00385 
00386 }  // namespace CLHEP

Generated on Thu Jul 1 22:02:30 2010 for CLHEP by  doxygen 1.4.7