Properties of low-lying intruder states in ³⁴Al and ³⁴Si populated in the beta-decay of ³⁴Mg

R. Lică^{*,†}, F. Rotaru^{*}, F. Negoiță^{*}, S. Grévy^{**}, N. Mărginean^{*}, Ph. Desagne[‡],
T. Stora[†], C. Borcea^{*}, R. Borcea^{*}, S. Călinescu^{*}, J. M. Daugas[§], D. Filipescu^{*},
I. Kuti[¶], L.M. Fraile^{||}, S. Franchoo^{††}, I. Gheorghe^{*}, D.G. Ghiță^{*}, R. Mărginean^{*},
C. Mihai^{*}, P. Mourface[¶], P. Morel[§], J. Mrazek^{‡‡}, A. Negreț^{*}, D. Pietreanu^{*}, T. Sava^{*},
D. Sohler[¶], M. Stănoiu^{*}, I. Stefan^{††}, R. Şuvăilă^{*}, S. Toma^{*} and C.A. Ur^{*,§§}

* "Horia Hulubei" National Institute for Physics and Nuclear Engineering, IFIN-HH, P.O.B. MG-6, 077125 Magurele, Romania

[†]ISOLDE/CERN, Geneva, Switzerland **CENBG, Université de Bordeaux, CNRS/IN2P3, Chemin du Solarium, 33175 Gradignan Cedex, France [‡]IPHC, Université de Strasbourg, IN2P3/CNRS; BP28, F-67037 Strasbourg Cedex, France [§]CEA, DAM, DIF, Bruyéres-le-Chaîel, F-91297 Arpajon Cedex, France [¶]Institute of Nuclear Research, H-4001 Debrecen, Pf.51, Hungary [¶]Grupo de Física Nuclear, Facultad de CC. Físicas, Universidad Complutense, Madrid, Spain, ^{††}IPNO, Université Paris-Sud 11, CNRS/IN2P3, Orsay, France ^{‡‡}NPI, Nuclear Physics Institute, AS CR, CZ-25068 Rez, Czech Republic ^{§§}INFN - Sezione di Padova, Italy

Abstract.

The results of the IS530 experiment at ISOLDE revealed new information concerning several nuclei close to the $N \approx 20$ 'Island of Inversion' - ³⁴Mg, ³⁴Al, ³⁴Si. The half-life of ³⁴Mg was found to be three times larger than the adopted value (63(1) ms instead of 20(10) ms). The beta-gamma spectroscopy of ³⁴Mg performed for the first time in this experiment, led to the first experimental level scheme for ³⁴Al, also showing that the full beta strength goes through the predicted 1⁺ isomer in ³⁴Al [1] and/or excited states that deexcite to it. The subsequent beta-decay of the 1⁺ isomer in ³⁴Al allowed the observation of new gamma lines in ³⁴Si, (tentatively) associated with low-spin high-energy excited states previously unobserved.

Keywords: HPGe, LaBr₃(Ce) detectors, plastic scintillator, ³⁴Mg, ³⁴Al, ³⁴Si, β^- decay, measured γ - γ coincidences, deduced level scheme. **PACS:** 21.10.Tg, 23.20.Lv, 23.40.-s, 27.30.+t,

1. INTRODUCTION

More than three decades after the first clues [2, 3] to the existence of a region of deformation and/or shape coexistence around N = 20 - the "Island of Inversion" - there are nuclei in its vicinity for which the experimental information is scarce. Such an example is the heaviest nucleus inside this 'island' - ³⁴Mg, whose first beta-gamma spectroscopy was performed in our recent experiment at ISOLDE [4]. The daughter nucleus - ³⁴Al - had no experimental level scheme, though some transitions were assigned to this nucleus [5, 6]. Moreover a low spin beta-isomer of unknown excitation energy was evidenced at GANIL [1], presumably the 1⁺ state of 1 $\hbar\omega$ configuration [4, 7], populating strongly the deformed 0⁺₂ isomer in ³⁴Si of intruder origin.

2. EXPERIMENT

The β^- decay spectroscopy of ³⁴Mg was performed at the ISOLDE facility at CERN. The ³⁴Mg isotopes were produced by the CERN Proton Synchrotron Booster (PSB) 1.2-GeV proton-beam which induced spallation in a thick uranium carbide (UCx) target. The reaction products were extracted and ³⁴Mg was selected using the high resolution mass separator (HRS) and resonant laser ionization (RILIS). During the experiment, an yield of ~ 600 ³⁴Mg atoms per proton pulse was obtained, leading to an average of ~ 200 implanted ³⁴Mg per second.

Exotic Nuclei and Nuclear/Particle Astrophysics (V). From Nuclei to Stars AIP Conf. Proc. 1645, 363-366 (2015); doi: 10.1063/1.4909602 © 2015 AIP Publishing LLC 978-0-7354-1284-2/\$30.00

FIGURE 1. Level scheme of ³⁴Al following the β -decay of ³⁴Mg.

The detection system consisted of beta and gamma detectors in order to provide an unique selection of β - γ - γ coincidences and neutron detectors to select β -n and β -2n decay channels. There were three HPGe clover detectors, one HPGe coaxial detector, five LaBr₃:Ce crystals which were used as fast-timing γ detectors and three NE213 liquid scintillators as neutron detectors.

A NE102 plastic scintillator was used as a β trigger of ~ 90% efficiency. This detector had a complex geometry that was designed to comply with several criteria. First of all, in order to maximize the beta efficiency, the implantation tape (of the fast-tape station) passed through a slit in the middle of the scintillator, a hole through one of the faces allowing the implantation of the beam into the foil. A second constraint was related to the thickness of the plastic that needed to be reduced in order to diminish the effect on the low energy γ efficiency.

3. EXPERIMENTAL RESULTS

The γ spectrum following the β -decay of ³⁴Mg and $\gamma - \gamma$ coincidence analysis led to the preliminary ³⁴Al level scheme built on top of the 1⁺ isomer, displayed in Fig. 1. None of the 22 gamma transitions from ³⁴Al observed in this experiment are found among the previously reported lines of ³⁴Al (388, 433, 597, 706, 916 and 1206 keV from [5], and 657 keV from [6]). The direct γ transition 1⁺ \rightarrow 4⁻ was not observed, most likely as a result of an excitation energy significantly smaller than the 550-keV value predicted by the shell-model calculations in [1], thus leading to a very small γ branch from the 1⁺ β -isomeric state. Also, none of the observed transitions could be connected to the 4⁻ ground state of ³⁴Al, inferring that it is not significantly fed in the β -decay of ³⁴Mg.

The β -decay half-life of ³⁴Mg was determined using the γ -gated β -time with respect to the proton pulse leading to $T_{1/2} = 63(1)$ ms, three times larger than the previously measured value determined from β -n coincidences [8]. This new value is also confirmed by the β time gated using known γ transitions in ³³Al (populated in the β -n decay of ³⁴Mg).

The subsequent β -decay of ³⁴Al revealed several new γ transitions in ³⁴Si, $\gamma - \gamma$ coincidences leading to the decay scheme depicted in Fig. 2. The newly reported lines are in coincidence with the previously known transitions from the

FIGURE 2. Beta-decay of ³⁴Al: from the 4⁻ ground state [9] (left), and from the 1⁺ isomer [this experiment] (right)

beta-decay of the 34 Al 4⁻ ground state [9]. The 5.3 MeV transition seen in [10, 11] from the supposed second 2⁺ to the ground state was not observed.

The absence of gammas that were previously shown to be fed in the β -decay of the ³⁴Al 4⁻ ground state [9], such as the 124-keV line, is a strong indication that it is not populated (directly or indirectly) in the beta-decay of ³⁴Mg (despite a large number of excited states found in ³⁴Al that could have a γ branch to the 4⁻ ground state). This is another evidence to support the scenario presented in Fig. 1, showing that none of the detected gammas in ³⁴Al feed the 4 ground state.

In order to extract the β -decay half-life for ³⁴Al, the β -time with respect to the proton bunch was gated using γ lines of ³⁴Si. The resulting time spectrum was fitted with a convolution of two decay components: one having the known ³⁴Mg half-life of 63(1) ms as a fixed parameter, and the second one with a free parameter corresponding to the ³⁴Al decay-time. The resulting $T_{1/2} = 25(4)$ ms is in good agreement with the previously measured value [1]. It also confirms the idea that the 4 ground state of ³⁴Al is not populated in the β -decay of ³⁴Mg.

A fast digitizer (1 GHz) was used to acquire traces from the plastic scintillator and recorded 'double hit' type of evens corresponding to a beta electron followed by an electron-positron pair (generated in the E0 decay) from the 0_2^+ isomer in ³⁴Si [1]. Such events were accumulated with enough statistics, enabling the measurement of a 20(2) ns half-life for the first excited state in ³⁴Si as shown in Fig. 3. This result is in agreement with the value determined in [1].

4. CONCLUSIONS

The present study brings new information concerning the decay of ${}^{34}Mg$. Its half-life was found to be three times larger than the adopted value. The first experimental level scheme of ${}^{34}Al$ is proposed, containing 22 transitions that

FIGURE 3. Digitized trace from the plastic detector for a 'double hit' type of event. The inset is the time spectrum resulting from the analysis of such traces, leading to a 20(2) ns half-life for the 0_2^+ in 34 Si

deexcite to the the 1⁺ isomer evidenced in [1]. The beta-decay of the 1⁺ isomer in ³⁴Al allowed the observation of new gamma lines in ³⁴Si. No β or γ branching was observed to populate the 4⁻ final state, previously assumed the ground state of ³⁴Al. Therefore, the question remains open, whether the 1⁺ or the 4⁻ is the ground state of ³⁴Al.

REFERENCES

- 1. F. Rotaru et al., Phys. Rev. Lett. 109, 092503 (2012)
- 2. C. Thibault et al., Phys. Rev. C 12, 644 (1975)
- 3. C. Detraz et al., Phys. Rev. C 19, 164 (1979)
- 4. F. Negoita et al., INTC-P-314 (2011)
- 5. M. Gelin, PhD thesis, Universite de Caen (2007)
- 6. B.V. Pritychenko et al., Phys. Rev. C 63, 047308 (2001)
- 7. P. Himpe et al., Phys. Lett. **B 658**, 203 (2008)
- 8. M. Langevin et al., Nucl. Phys. A 414, 151 (1984)
- 9. S. Numella et al., Phys. Rev. C 63, 044316 (2001)
- 10. L.K. Fifield et al., Nucl. Phys. A 440, 531 (1985)
- 11. R.G.T. Zegers et al., Phys. Rev. Lett. 104, 212504 (2010)