Missing mass spectroscopy of ⁸He and ¹⁰He by (d,³He) reaction

A. Matta,^{1,2} D. Beaumel,^{1,3} H. Otsu,³ V. Lapoux,⁴ N.K. Timofeyuk,² N. Aoi,³ M. Assie,¹ H. Baba,³ S. Boissinot,⁴ R. Chen,³ F. Delaunay,⁵ N. de Sereville,¹ S. Franchoo,¹ P. Gangnant,⁶ J. Gibelin,⁵ F. Hammache,¹ C. Houarner,⁶ N. Imai,⁷ N. Kobayashi,⁸ T. Kubo,³ Y. Kondo,⁸ Y. Kawada,⁸ L.H. Khiem,⁹ M. Kurata-Nishimura,³ E.A. Kuzmin,¹⁰ J. Lee,³ J.F. Libin,⁶ T. Motobayashi,³ T. Nakamura,⁸ L. Nalpas,⁴ E. Yu. Nikolskii,^{3,10} A. Obertelli,⁴ E.C. Pollacco,⁴ E. Rindel,¹ Ph. Rosier,¹ F. Saillant,⁶ T. Sako,⁸ H. Sakurai,³ A. Sanchez-Benitez,^{11,12} J-A. Scarpaci,¹ I. Stefan,¹ D. Suzuki,¹ K. Takahashi,⁸ M. Takechi,³ S. Takeuchi,³ H. Wang,³ R. Wolski,¹³ K. Yoneda³

¹Institut de Physique Nucléaire, IN2P3-CNRS
²Department of Physics, University of Surrey
³RIKEN Nishina Center
⁴CEA, Centre de Saclay, IRFU/Service de Physique Nuclaire
⁵LPC Caen, ENSICAEN, Universit de Caen, CNRS/IN2P3
⁶GANIL, CEA/DSM - CNRS/IN2P3
⁷IPNS,KEK
⁸Tokyo Institute of Technology,O-okayama,Tokyo
⁹Center of Nuclear Physics, Institute of Physics, Vietnam Academy of Science and Technology
¹⁰National Research Centre "Kurchatov Institute"
¹¹Departamento de FA, Universidad de Huelva
¹²Centro de Física Nuclear da Universidade de Lisboa
¹³Institute of Nuclear Physics PAS
E-mail: a.matta@surrey.ac.uk

(Received September 30, 2014)

We present the first missing mass spectrum of the unbound system ¹⁰He obtained from one nucleon transfer ¹¹Li(d,³He) reaction at 50 A MeV. We found rather large yields for the 6He+4n decay channel especially for higher excitation energy, which suggest the importance of the ⁶He+4n structure in 10He.

KEYWORDS: resonance, transfer reaction, nuclear structure

1. Introduction

All studies in which ¹⁰He has been populated by proton removal from ¹¹Li and observed in invariant-mass spectroscopy agree that $E \sim 1.2$ -1.6 MeV [1–4]. Recently, the analysis of the missing-mass spectrum from the transfer reaction ⁸He(t,p)¹⁰He [5] lead to a sizeably higher value, $E \sim 2.1$ MeV.

Our experiment, performed in July 2010 at the RIKEN RIPS facility, used a secondary beam of ¹¹Li at 50 AMeV on a CD₂ target. At forward angle, a wall of four MUST2 telescopes [6] were coupled with four 20 μ m thick silicon detectors in order to perform an E- Δ E identification of the light particles, and separation of ⁴He and ³He. At zero degree, a fifth MUST2 telescope and a two stages plastic detector were used for identification of heavy residues of reaction in coincidences. Around 90° an additional MUST2 telescope was used to measure the (*d*,*d*) elastic scattering of the beam particles. In addition a ⁹Li beam at 50 AMeV was used to perform a reference experiment populating

the ground state of ⁸He. The later was correctly reconstructed, validating our experimental technique.

Fig. 1. The ¹⁰He spectrum measured from ¹¹Li(d,³He) reaction data in coincidences between ³He and ⁸He (*solid blue*) and ⁶He (*dashed orange*). The two vertical dashed lines indicate the positions of the ⁶He+4n and ⁴He+6n thresholds.

The final excitation spectrum of the unbound ¹⁰He, reconstructed in coincidence with ⁸He decay products (Fig.1), exhibits two clean resonances located respectively at 1.3(3) MeV and 6.3(6) MeV above the two neutron threshold, with natural widths of 1.1(6) MeV and 2.7(7) MeV respectively. In addition the spectrum obtained in coincidence with the ⁶He decay products (Fig.1) is showing a preferred decay to the ⁶He+4n channel when possible. This could be inferred to the important role played by the ⁸He(2+) excited state in the ¹⁰He structure, arguing for the development of models beyond the three-body approach.

The associate differential cross section has been obtained for the ⁸He ground state (Fig. 2.a) and the ¹⁰He ground state resonance (Fig. 2.b) in coincidence with ⁸He decay products around zero degrees. Finite-range DWBA calculations were performed using the DWUCK5 code [7]. Parameters for the $d+^{9,11}$ Li potentials (Table I), were adjusted to fit the experimental cross-sections presented in Fig.3.

Nucl.	V	\mathbf{r}_V	a _V	W	\mathbf{r}_W	a_W	W_D	V _{so}	r _{so}	a _{so}
⁹ Li	90.90	1.189	0.85	4.68	1.28	1.85	3.00	8.96	1.53	0.35
¹¹ Li	77.13	0.89	1.22	18.48	1.19	0.97	7.48	8.91	0.80	0.30

Table I. Optical model parameters (defined in Ref. [10]) fitted to reproduce the $d+^{9,11}$ Li data shown in Fig. 3.

The ³He optical potentials were taken from Ref. [8]. The $\langle d|^{3}$ He \rangle overlap has been taken from the latest *ab initio* calculations [9]. The overlap functions $\langle ^{11}\text{Li}|^{10}\text{He}\rangle$ were represented by single-particle (s.p.) wave functions obtained in a standard potential model (SPM) with the Woods-Saxon potential of reduced radius $r_0 = 1.25$ fm and diffuseness a = 0.65 fm.

Fig. 2. Experimental differential cross section (solid dot) in coincidence with ⁸He around zero degree against DWBA calculation using standard potential model (SPM) calculations for (*a*) ⁸He and (*b*) ¹⁰He ground states population.

Fig. 3. Measured (d,d) cross sections from (a) ⁹Li and (b) ¹¹Li and their fit by optical model in comparison to predictions of global optical models A&C [11], HSS [12] and DAE [10].

The ¹⁰He case is showing the most extreme reduction factor $R_s = 0.09(2)$ ever deduced from (³He,*d*) and (*d*, *p*) reactions for other nuclei [13] but consistent with the systematics of R_s observed in nucleon knockout reactions in [14]. In comparaison, the ⁸He case exhibit a reduction factor $R_s = 0.38(5)$ close to typical values deduced from transfer reaction.

In conclusion, our experiment correctly reproduce the ground state of ⁸He and found the ground state resonance of ¹⁰He at 1.3(3) MeV above the two neutron emission threshold. In addition a second resonance is observed around 6.3(6) MeV. For the first time differential cross section associate with the ground state are presented and compared with the DWBA calculation. The deduced reduction

factor using SPM form factor are the smallest ever rising question on both structure and reaction effect at stake past the neutron drip line.

References

- [1] A. Korsheninnikov et al, Phys. Lett. B 326, 31-36 (1994)
- [2] A. Ostrowski et al, Phys. Lett. B 338, 13-19 (1994)
- [3] T. Kobayashi et al, Nucl. Phys. A 616, 223-230 (1997)
- [4] H. Johansson et al, Nucl. Phys. A 847, 66-88 (2010)
- [5] M. Golovkov et al, Phys. Lett. B 672, 22 29 (2009)
- [6] E. Pollacco et al, Eur. Phys. Jour. A 25, 287-288 (2005)
- [7] P. D. Kunz, DWUCK5, http://spot.colorado.edu/ kunz/DWBA.html
- [8] Pang, D. Y. et al, Phys. Rev. C 79 2, 024615 (2009)
- [9] I. Brida et al, Phys. Rev. C 84, 024319 (2011)
- [10] W. W. Daehnick et al, Phys. Rev. C 21, 2253–2274 (1980)
- [11] H. An and C. Cai, Phys. Rev. C 73, 054605 (2006)
- [12] Y. Han et al, Phys. Rev. C 74, 044615 (2006)
- [13] B.P. Kay et al, Phys. Rev. Lett. 111, 042502 (2013)
- [14] A. Gade et al, Phys. Rev. C 77, 044306 (2008)