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The CRIS setup at CERN-ISOLDE is a laser spectroscopy experiment dedicated to the high-resolution study
of the spin, hyperfine structure and isotope shift of radioactive nuclei with low production rates (a few
per second). It combines the Doppler-free resolution of the in-flight collinear geometry with the high
detection efficiency of resonant ionisation. A recent commissioning campaign has demonstrated a 1%
experimental efficiency, and as low as a 0.001% non-resonant ionisation. The current status of the exper-
iment and its recent achievements with beams of francium isotopes are reported. The first identified sys-
tematic effects are discussed.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Laser spectroscopy of radioactive atoms provides ground-state
nuclear properties without any nuclear model assumptions [1,2].
It has therefore attracted a lot of interest in the recent years [3,4]
and the techniques are being pushed to their limits to study the
most exotic systems.
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In general, the collinear laser spectroscopy technique uses
beams produced at on-line facilities where the ions are mass sep-
arated and delivered either continuously or alternatively in
bunches to the experimental setup. The beam may be neutralised
in an alkali vapour upon entering the atom/laser interaction region
where the atom beam is overlapped by a co-propagating laser
beam. The excited atoms decay and the resonantly scattered pho-
tons are detected with photomultipliers. The acceleration of the
beam provides a reduction of the velocity distribution of the ions,
resulting in a Doppler compression of the resolution down to the
natural line width. This technique has benefited, in recent years,
from the use of bunched beams [5,6] and has reached a sensitivity
down to 100 ions per second under optimum conditions [7],
though a more typical required rate is 10,000 ions per second [3].

In-source laser spectroscopy is an alternative to the collinear la-
ser spectroscopy technique and has gained particular interest in
the last decade [8]. The isotopes of interest are resonantly ionised
within the ion source with a series of resonant transitions, one of
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which is scanned across the resonance, mass separated and deliv-
ered to a counting station. The high efficiency of ion counting and
the possibility of decay tagging has made this technique very pow-
erful and has allowed the study of isotopes with production rates
below 1 atom per second [9-12]. The spectroscopic resolution is
dependent upon the ion source conditions (temperature, pressure,
divergence) and is typically 100-1000 times lower than in collinear
laser spectroscopy, although continuous improvements are ongo-
ing [13].

The Collinear Resonance lonisation Spectroscopy (CRIS) tech-
nique was proposed as a means of benefiting from both techniques
[14]. The ion beam is prepared and delivered to the experiment as
in collinear laser spectroscopy. The atom beam is then overlapped
with additional laser beams for efficient ionisation. The ionised
beam is finally deflected towards a high-efficiency counting
station.

The first demonstration of this technique suffered however
from a low duty cycle associated with overlapping a continuous
ion beam with a pulsed laser system [15], resulting in an efficiency
of 0.001%. Subsequent tests performed at the University of Jyvas-
kyld with bunched beams and synchronised pulsed lasers achieved
a high efficiency but suffered from bad vacuum conditions result-
ing in a high background rate from non-resonant collisional re-ion-
isation [6,16-18].

2. The CRIS setup at ISOLDE

The new CRIS setup at CERN ISOLDE has been designed to over-
come the shortcomings of the previous applications of this tech-
nique. The three components of the setup are the ion beam line,
the laser system, and the detection chamber.

2.1. The CRIS beam line

The radioactive beam is produced upon the impact of the CERN
PSBooster proton beam onto the ISOLDE target [19]. The nuclear-
reaction products diffuse and effuse to an ion source, the ions are
accelerated to 30-50 keV, mass separated in the high-resolution
separator magnets HRS [20], cooled and bunched in a gas-filled
radio-frequency quadrupole linear Paul trap (ISCOOL) [21] and
delivered to the experimental setup.

A detailed description of the CRIS beam line can be found in Ref.
[22]. Its most important features and characteristics are presented
in this section and can be seen in Fig. 1. The ion bunch is deflected
to the laser axis to be overlapped. It is then neutralised in a potas-
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sium-filled charge-exchange cell. The charge-exchange cell cham-
ber may be biased to Doppler tune the bunch onto resonance.
The potassium vapour is maintained at a temperature near
150°C and produces a background pressure of the order of
107 mbar.

The neutral atom bunch is then directed through a differential
pumping region while the non-neutralised component is deflected
within the differential pumping region. The atom bunch is tempo-
rally overlapped with the laser pulse in the interaction region,
where the pressure is maintained under 10~8 mbar, in order to
minimise non-resonant collisional ionisation. The axial overlap is
adjusted with ion optic electrodes upstream of the charge-ex-
change cell, while the longitudinal overlap is adjusted by syn-
chronising the laser pulses with the bunch release from ISCOOL.
In the study of the francium isotopes, the atom bunch width was
found to be ~ 2 s, which is well contained within the length of
the interaction region (1.5 m).

At the end of the interaction region, the re-ionised atoms are
deflected to the decay-spectroscopy station (DSS) to be counted
with either a micro-channel plate (MCP) detector or an «-decay
spectroscopy setup.

2.2. The laser system

The francium atoms are ionised in a two-step process, with a
resonant transition from the 7s2S;/, atomic ground state to the
8p2P), state at 23,658.306 cm~ !, and a non-resonant excitation
across the ionisation potential with a 1064 nm laser pulse.

The full laser system can be seen on Fig. 2. The 422.7 nm laser
light is provided by one of the RILIS tunable Ti:Sapphire (Ti:Sa) la-
ser [23], which was operated in narrow line-width mode [24]. The
Ti:Sa laser is pumped with a frequency doubled Nd:YAG laser,
operating at 10 kHz pulse repetition rate. The fundamental output
of the Ti:Sa laser is frequency doubled in a BBO crystal. The laser
light is delivered to the CRIS experimental setup via a 35 m-long
optical fibre. The ability to scan this laser system has been im-
proved recently by the implementation of a remote control system
with a built-in stability control system [25]. The bandwidth of the
fundamental laser light was typically 1 GHz.

The second step used the fundamental output of a Nd:YAG laser
at 30 Hz repetition rate. The two lasers are synchronised tempo-
rally and the time overlap is monitored with a photodiode placed
downstream of the interaction region. The 10 kHz signal was used
as the master trigger for the experiment.

The two laser pulses are merged spatially on a launch platform
in front of the beam line and overlapped with the ion/atom beam
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Fig. 1. Layout of the CRIS beam line. The ion and laser beams travel from right to left through the charge exchange cell, the interaction region, and finally to the DSS.
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Fig. 2. Layout of the laser system for the 2012 CRIS campaign. The 10 kHz-pulsed tunable-frequency laser light at 422.7 nm was provided by the RILIS team [23,24] and
transported to the CRIS optical bench via a 35 m-long optical fibre. The tunable first step laser is overlapped with the fundamental infra-red light from a 30 Hz Nd: YAG laser at
1064 nm. Both laser beams are reflected to the beam line and overlapped with the atoms in the interaction region. (For interpretation of the references to colour in this figure

caption, the reader is referred to the web version of this article.)

axis prior to the charge exchange cell. The differential pumping
apertures are used as guides for the laser beam alignment. The final
atom/laser beam overlap adjustments are performed on-line using
the intensity and time profile of the resonance signal.

2.3. The ion detection setups

The re-ionised atoms are deflected into the DSS and impinge
upon a biased copper plate. Secondary electrons are emitted from
the ion impacts and are guided via an electric field gradient to the
surface of an MCP detector (see Fig. 3). The signal from the MCP is
digitised and processed via a LeCroy WavePro Zi 2.5 GHz band-
width oscilloscope. Only signals in time coincidence with the ex-
pected arrival of the re-ionised atoms are recorded. The total
efficiency of ion counting has been estimated on-line to be >30%.

Fig. 3. MCP for secondary electron emission detection in the CRIS DSS chamber. The
beam enters the chamber from the right side, hits the biased copper dynode (centre
of the picture, purple) and are transported to the MCP with a guiding electric field.
(For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this article.)

Possible sources of background may arise from radioactivity on
the copper plate, dark counts of the MCP, or noise on the electronic
signals. The radioactivity on the plate is dependent upon the
implantation rate from the beam and the half-life of the isotopes
along the decay chain. The experimental protocol was thus de-
signed to avoid intense beam implantation and to keep the stron-
gest activity from contaminating the setup. Decay periods were
also considered to let the activity on the plate reduce in prepara-
tion for cases needing high sensitivity.

The MCP dark count rate is low (1 count per second) and ran-
domly distributed in time. The probability of observing a dark
count event in the acquisition window (10 ps window at 30 Hz)
is therefore 3 x 10~*. This bunching compression of the back-
ground rate reduces the radioactivity-related background as well.

Finally, the noise on the electronic signal has been the subject of
an extensive investigation. The surrounding electric and electronic
components have all been controlled and selected in order to min-
imise their impact.

The re-ionised beam may also be deflected into the «-decay
spectroscopy setup. A complete description of the decay setup
can be found in Ref. [26-28]. The sample holder and silicon detec-
tor assembly can be seen in Fig. 4.
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Fig. 4. Layout of the CRIS Decay Spectroscopy Station.
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The beam is implanted through a 4 mm aperture onto a 20 pg/
cm? carbon foil [29] mounted on a rotatable wheel with 9 sample
holders and a Faraday cup. The implantation site is surrounded by
two silicon detectors (thickness 300 pum) to measure the energy of
charged particles emitted during the radioactive decay of the im-
planted sample. The detector upstream of the implantation sample
has an aperture of 4 mm to let the ion beam through. A collimator
prevents direct deposition on the back of the annular detector. Two
additional silicon detectors surround an off-axis position to study
longer-lived isotopes in pure decay conditions or to monitor the
remaining activity on the carbon foils.

The solid-angle coverage of the on-axis detectors has been sim-
ulated to collect 68% of the charged particles. The line profiles have
also been simulated, accounting for the penetration of the foil
thickness at different angles using the SRIM simulation package
[30].

Up to three high-purity germanium detectors can be placed
around the DSS to observe the 7y rays in coincidence with the
charged particles. An in-depth discussion on the y-ray intensity
attenuation and efficiency can be found in Ref. [26].

3. Results of the 2012 campaign

In the course of the 2012 campaign, the hyperfine structure of
the isotopes 202-207211219-221229231p.  and  of jsomers in
202:204,206.218F1 haye been studied at the CRIS setup over two exper-
imental runs in August [17] and October. More information on the
scientific results may be found in forthcoming publications.

3.1. Performance

A representative hyperfine spectrum of 22'Fr is shown in Fig. 5.
Each frequency point is sampled for 10 s for isotopes with reason-
ably high or continuous production rates, or for a full PSBooster
supercycle (36-54 s) for weakly produced isotopes which produc-
tion is highly correlated to the proton impact on target. The exper-
imental conditions were optimised on the 22'Fr resonance: the
spatial and temporal overlap of the laser pulses and atom bunches,
the charge exchange cell temperature, and the laser power in the
resonant and non-resonant steps.

A neutralisation efficiency of 50% was achieved using potas-
sium. The total re-ionisation efficiency during the campaign,
including the transport from ISCOOL, neutralisation, laser ionisa-
tion, and detection, reached €, > 1%. The non-resonant equivalent
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Fig. 5. Spectrum of 2?'Fr. Each point is sampled for 10s.

efficiency was determined to be €, < 0.001% while operating at a
pressure of 8 x 10" mbar in the interaction region. For a beam
contamination of 50% from the ion source (e.g. to disentangle
two isomers), this would correspond to (€, — €,)/€; > 99.9% beam
purity at the exit of the CRIS setup.

The most exotic case studied in the course of the 2012 cam-
paign was 2°%Fr, with a yield of 100 ions/uC. The essentially back-
ground-free conditions permitted the identification of the scanning
regions of interest in 5 min, contributing to the overall campaign
success.

3.2. Systematic analysis

As the technique of in-flight laser ionisation has not yet been
thoroughly investigated and considering the recent challenges that
the in-source laser ionisation technique has been confronted with
[31-33], a systematic investigation of the results is crucial.

We have therefore repeatedly remeasured the hyperfine spec-
trum of 22'Fr through the course of the campaign, as well as its iso-
tope shift to 2°7211220Fr We report here on the extraction of the
magnetic dipole moment from each of those four isotopes. A total
of 29 data points are available.

The hyperfine spectra, as shown in Fig. 5, have been analysed by
fitting Voigt profiles, from which it was finally determined that the
line shape is dominated by the Gaussian contribution from the nar-
row-band Ti:Sa laser (FWHM 1.5 GHz). From the combination of
the nuclear spins to the electron angular momentum, two groups
of peaks are expected, consisting of 1-3 peaks depending upon
the nuclear spin. Those are however not resolved. The spectra are
then fitted with the 3-6 required components; their position being
determined relatively with respect to the transition centre of grav-
ity using the atomic ground-state hyperfine parameter A, and the
excited state hyperfine parameters A.s and B.s. The fit is found to be
insensitive to the B, parameter, this is therefore ignored. The res-
olution is not sufficient to extract the A, parameter: it was related
to Ag by imposing a constant ratio, and assuming that the experi-
mental conditions were not sensitive to the hyperfine anomaly.
The relative intensity of the two envelopes are kept independent,
however the relative intensity of the peaks within each envelope
is assumed to be that of standard angular momentum coupling.
Although this is known to be incorrect [32,34], it is the most real-
istic estimate currently available.

The moments are compared to the literature values and their
ratios are shown in Fig. 6. A scatter of 0.7% is found around 0.999
and is considered as the experimental uncertainty of the 2012
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Fig. 6. Distribution of the CRIS hyperfine parameter Ag for the atomic ground state
of francium in 207:211:220221k; with respect to the literature values. The error bars
reflect only the statistical uncertainty of each measurement. The results scatter by
0.7% around the literature values (shaded area).
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campaign using the current laser system, corresponding to an
absolute error of about 30-40 MHz on the hyperfine parameter
Ag. This scatter is believed to be mostly due to the limited
resolution of the laser system used in this campaign. This corre-
sponds to a significant improvement with respect to the several
100 MHz uncertainty reported from previous campaigns [35].

3.3. a-decay tagging

Beams that consist of several isomers of an isotope present the
added difficulty that their respective components cannot be iden-
tified with the MCP. Instead, the beam for each component is deliv-
ered to the DSS to tag them according to the characteristic pattern
of their decay [28].

In the case of the francium isotopes, the beams may contain up
to 3 states with similar half-lives and production rates. Several
hyperfine components are accordingly observed in the MCP scan
data. The beam re-ionised for those respective components can
then be delivered to the DSS, yielding the different o«-decay energy
spectra from which the respective nuclear states can be identified.

Decay spectroscopy data was also acquired to study some of
these isotopes in unprecedented clean conditions. These results
are reported in a forthcoming publication.

4. Conclusions

The CRIS setup has been built at CERN ISOLDE in order to study
the ground-state properties of very exotic nuclei. The successful
2012 campaign has demonstrated an efficiency better than 1% for
a background rate up to 0.001%. The ground state of 13 isotopes
and isomeric states in 4 isotopes of francium have been studied
in near background-free conditions, with intensities as low as
100 ions/pC. The a-decay tagging and beam purification have also
been demonstrated at the DSS.

The first systematic analysis of magnetic dipole moments has
shown no systematic shift and concluded in an uncertainty of 0.7%.

The CRIS setup will be improved in the coming years in terms of
higher efficiency (beam transport, detection efficiency, laser
power), increased resolution (continuous wave laser operation,
reliable Doppler tuning), and reduced background rate (better vac-
uum with Getter material and additional differential pumping).
The range of applicability shall also be expanded with the intro-
duction of additional laser systems for 3-step ionisation schemes,
using either field ionisation of high-lying Rydberg states, or alter-
natively via auto-ionising states.

Finally, the success of this technique with small sample size
opens new possibilities for beam manipulation and purification
at radioactive ion beam facilities and for trace analysis.
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