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The nuclear structure of 51Ar, an uncharted territory so far, was studied by the (p,2p) reaction using 
γ -ray spectroscopy for the bound states and the invariant mass method for the unbound states. Two 
peaks were detected in the γ -ray spectrum and six peaks were observed in the 50Ar+n relative energy 
spectrum. Comparing the results to our shell-model calculations, two bound and six unbound states 
were established. Three of the unbound states could only be placed tentatively due to the low number 
of counts in the relative energy spectrum of events associated with the decay through the first excited 
state of 50Ar. The low cross sections populating the two bound states of 51Ar could be interpreted as a 
clear signature for the presence of significant subshell closures at neutron numbers 32 and 34 in argon 
isotopes. It was also revealed that due to the two valence holes, unbound collective states coexist with 
individual-particle states in 51Ar.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Working on the origin of the elements, Maria Goeppert-Mayer 
and Edward Teller discovered a specific pattern and special num-
bers in atomic nuclei later named magic by Eugene Wigner. In 
this context Goeppert-Mayer published her important work on the 
closed shells [1,2] which paved the way to a fertile field of nuclear 
physics. It was soon realized that these magic numbers were not 
static, the location of single-particle states might change, and as a 
consequence magicity could appear at numbers different from the 
conventional ones in certain regions of nuclei [3–5]. In the past 
decades concerted experimental and theoretical efforts have been 
made to uncover the change of magicity and its underlying mech-
anisms [6].

Based on the indirect (energy of the first 2+ state, reduced tran-
sition strength, etc.) and direct (for example, two-neutron separa-
tion energy) indicators of magicity substantial experimental data 
were collected which supported a new magic number at N = 32
for Cr [7,8], Ti [9,10], Sc [11], Ca [12–14], K [15], and Ar [16] iso-
topes. However, contrary results were also published for Ti [17]
isotopes showing the limitation of the indicators. In addition, a 
possible subshell closure at the neutron number 34 was also pre-
dicted as early as about 20 years ago [18]. This magicity did not 
manifest itself in Cr [8,7], Ti [9,19] and Sc [20] isotopes, however 
few experiments indicated its presence in Ca [21–23] and Ar [24]
isotopes.

The low-lying structure of 53Ca, located between N = 32 and 
N = 34 was investigated by β-decay [25], multi-nucleon knock-out 
[21] and neutron knock-out [23] reactions. The observed lowest 
two excited states (3/2−

1 , 5/2−
1 ) were interpreted by promoting a 

neutron to a higher orbital across the sizable shell gaps at 32 and 
34, respectively. By removing two protons from 53Ca we arrive at 
51Ar, which is a similar outstanding case to test the magicity of the 
neutron numbers 32 and 34. Therefore, we have studied 51Ar for 
the first time by the (p,2p) reaction in order to map its low-lying 
excited states.

2. Experiment

The experiment was performed at the Radioactive Isotope Beam 
Factory operated by the RIKEN Nishina Center and the Center for 
Nuclear Study of the University of Tokyo. A beam of 70Zn ions 
was produced at an energy of 345 MeV/u and at a beam inten-
sity of 240 pnA by the accelerator complex. This primary stable 
beam collided with a 9Be production target of 10 mm thickness 
placed at the entrance of the BigRIPS separator [26] forming ra-
dioactive nuclei by fragmentation. The selection of ions of interest 
was performed by the Bρ − �E − T O F method (Bρ: magnetic 
rigidity, �E: energy loss, TOF: time of flight) [27] using slits and 
2

an aluminum wedged degrader at the first focal plane F1, located 
between the two dipole magnets D1 and D2 of BigRIPS. The con-
stituents of the resulting cocktail beam were tagged between the 
focal planes F3 and F7 by time of flight, energy loss and magnetic 
rigidity measurements. The TOF was determined by plastic scintil-
lators at F3 and F7 [28], while �E was taken from a gas ionization 
chamber at F7 [29]. The trajectory of the particles was monitored 
by several sets of parallel plate avalanche counters (PPAC) at F3, F5 
and F7 [30,31].

The excited states of 51Ar were produced in nucleon removal 
reactions using the MINOS device [32] which consisted of a 
polyethylene terephthalate cell filled with liquid hydrogen and a 
cylindrical time projection chamber (TPC) placed downstream of 
the focal plane F13. The effective target length was determined to 
be 151(1) mm. The TPC chamber contained a gas mixture of argon, 
CF4 and isobutane at room temperature and atmospheric pres-
sure. Its length, inner diameter, and outer diameter were 300 mm, 
80 mm, and 178.8 mm, respectively. The point of reaction was re-
constructed either by using the scattered and the removed protons 
or one of the protons and the projected trajectory of the radioac-
tive ions (the former method was preferred when both data were 
available) [33]. An overall efficiency of 95% and a resolution of 
5 mm (FWHM) along the beam axis was achieved for the events 
when at least one proton was recorded by the TPC.

The prompt γ rays were detected by the DALI2+ array [34]
consisting of 226 NaI(Tl) scintillator crystals packed in cylindrical 
layers of 10-28 units around the liquid hydrogen target and a for-
ward wall of 64 units. This arrangement provided a coverage of 
polar angles between 15◦ and 118◦ . The beam-like fragments leav-
ing the target were analyzed by the SAMURAI spectrometer [35]
based on Bρ , �E , and TOF measurements. The Bρ values were 
derived via trajectory determination by multiwire drift chambers 
located upstream (FDC1) and downstream (FDC2) of the magnet 
operated at a central magnetic field of 2.7 T. Downstream of the 
FDC2 a plastic scintillator wall consisting of 24 bars yielded the 
�E and the TOF relative to a plastic detector at F13.

For the observation of excited states decaying by neutron emis-
sion, neutron TOF spectrometers NeuLAND and NEBULA were 
placed at 11 m and 14 m, respectively, downstream of the tar-
get at 0◦ [36]. NEBULA consisted of 120 plastic scintillator bars, 
each with a dimension of 12 cm(W)×12 cm(D)×180 cm(H) ar-
ranged in two walls. Both walls consisted of two layers and were 
equipped with an additional thin (1 cm) layer of plastic scintil-
lators vetoing against the charged particles. The front face of the 
walls were separated by a distance of 85 cm. 400 NeuLAND units 
with a dimension of 5 cm(W)×5 cm(D)×250 cm(H) developed by 
the R3B collaboration [37] were placed upstream of NEBULA in 8 
alternating horizontal and vertical layers to increase efficiency.

http://creativecommons.org/licenses/by/4.0/
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Approximately 200 particles hit the liquid hydrogen cell every 
second while the intensity of the 52K ions was about 6 pps. The 
mean kinetic energy of the 52K particles at the entrance of the tar-
get was measured to be 260 MeV/u, losing an average 83 MeV/u 
while passing through the liquid hydrogen. 894 and 4002 events 
were counted in the 52K(p,2p)51Ar and 52K(p,2p)51Ar→50Ar+n re-
action channels, respectively.

3. Results and discussion

All the crystals of the DALI2+ array were calibrated for energy 
several times during the experiment using 60Co, 137Cs, and 88Y 
radioactive sources, which allowed a correction for the gain shift 
of the detectors (<0.4%). In order to increase the photopeak effi-
ciency of the setup, an addback procedure was applied during the 
analysis. This combined the hits in adjacent units (<15 cm) origi-
nating from a single γ ray undergoing Compton-scattering and/or 
pair production. The Doppler-correction of the emitted γ rays was 
performed using the vertex position determined by a tracking al-
gorithm for protons in the TPC. The change of the drift velocity in 
the TPC was monitored during the experiment and was taken into 
account in the analysis.

Fig. 1 shows the Doppler-corrected experimental γ -ray spec-
tra for 51Ar fragments. In the upper panel, there was no selection 
on the incoming beam, so all the reaction channels were included 
while the lower panel shows the events for the 52K(p,2p)51Ar 
reaction channel. Three peaks seem to be present in the upper 
panel, the positions of which were determined at 809(16) keV, 
963(9) keV, and 1180(9) keV by fitting the spectrum with Gaussian 
functions plus a double-exponential background. The uncertain-
ties originated from the statistics and the uncertainty due to the 
energy calibration (5 keV). The peaks at 963 keV and 1180 keV 
also appear for the 52K(p,2p)51Ar reaction channel but the peak at 
809 keV is barely visible.

In order to further analyze the spectra, separate simula-
tions were performed for the three transitions with the GEANT4 
code [38]. The resulting response functions were added together 
with individual scaling parameters plus a double-exponential back-
ground. The total fits are presented by red lines (including three 
peaks) in Fig. 1 while the backgrounds are plotted by blue lines. 
The statistical confidence of the peaks were determined to be 2.5σ , 
8.7σ and 9.5σ for the three peaks in the upper panel, which in-
dicates that the peak at 809 keV might not be real. For the lower 
panel, the confidence of this peak is even lower (1.0σ ) and the χ2

υ
values showed that the spectra could be fitted with an assump-
tion of only two peaks (green line in Fig. 1). Therefore, the peak at 
809 keV was not considered further.

Due to the low statistics, γ γ matrices could not be used to 
conclude coincidences for the γ rays, therefore we assumed that 
both transitions connected each an excited state and the ground 
state establishing two levels at energies of 963 keV and 1180 keV. 
The parallel placement of the γ rays is supported by the low 
neutron separation energy of 51Ar (Sn = 1.4(7) MeV from mass 
systematics [39], Sn = 1.57 MeV from our shell-model calculation). 
For the 52K(p,2p)51Ar reaction channel, the inclusive cross section 
was determined to be 0.62(2) mb while the exclusive cross sec-
tion was extracted to be 0.046(14) mb and 0.102(18) mb for the 
963-keV and the 1180-keV states, respectively.

The unbound excited states of 51Ar populated by the (p,2p) re-
action were derived by reconstructing the relative energy (Erel) of 
the 50Ar+neutron system. This energy is simply the difference be-
tween the invariant mass before and after the decay while the en-
ergy of the excited states can be calculated by adding the neutron 
separation energy of 51Ar. For the relative energy, the momentum 
of the 50Ar ions were determined by the SAMURAI spectrometer 
and the momentum of the neutron by the NEBULA+NeuLAND TOF
3

Fig. 1. Doppler-corrected γ -ray spectra for 51Ar using vertex reconstruction (re-
quiring only a single proton in the TPC) and addback procedure (upper panel: 
all reaction channels, lower panel: 52K(p,2p)51Ar reaction channel). The data with 
error bars and shaded area represent the experimental spectrum, the red and 
green lines are the simulations including three and two peaks, respectively, plus 
a double-exponential background, and the latter function (exponential background) 
is also plotted separately as a blue line.

spectrometer. The TOF calibration was performed using the γ -ray 
flash arriving at the spectrometer from the target before the neu-
trons. The unbound excited states of 51Ar could decay in a way 
that either the ground state or the excited states of 50Ar were pro-
duced. For the latter case, the emitted γ rays were also taken into 
account in order to correctly reconstruct the excited levels of 51Ar.

The resulting relative energy spectra are shown in Fig. 2 where 
the counts were corrected for the neutron detection efficiency of 
the NEBULA+NeuLAND setup (55% at 100 keV, 20% at 5 MeV). 
The upper panel includes all the events from the decay of un-
bound states in 51Ar while the lower panel was prepared with a 
gate on the Eγ = 1.178 MeV transition between the first excited 
state and the ground state of 50Ar [16]. The resonances appearing 
in the spectra were fitted with Breit-Wigner functions [40] (lines 
of light green, light blue, magenta, cyan, dark green, dark blue) 
according to the R-matrix theory [41]. The particular form of the 
functions included a central resonance energy parameter (E0), an 
energy-dependent apparent width parameter (	), an orbital an-
gular momentum parameter of the resonance (l), and a scaling 
factor. On the other hand, a non-resonant contribution to the spec-
tra could also arise which was modeled by a Maxwellian function 
(black line) [42] and added to the final fitting function (red line).

As a result, six resonances were identified the parameters of 
which are listed in Table 1. The best fit (χ2

υ = 0.99) achieved 
with the l values in the Table, however, these could not be used 
for a definitive assignment since similar goodness of fit could be 
gained by different sets of orbital angular momentum parame-
ters. In the lower panel only four peaks (271 keV, 1040 keV, 
1494 keV, 1883 keV) out of the observed six seem to appear. 
This spectrum was fitted in a manner similar to the above men-
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Fig. 2. Relative energy spectra for 51Ar corrected for the energy-dependent neutron 
detection efficiency including all the events from the decay of the excited states 
(upper panel) and only those events which were in coincidence with the transition 
between the first excited state and the ground state of 50Ar (lower panel). The data 
with error bars and shaded area represent the experimental spectrum. The red line 
represents a fit of Breit-Wigner functions (light green, light blue, magenta, cyan, 
dark green, dark blue) plus a background modeled by a Maxwell function. For the fit 
in the lower panel, the Breit-Wigner widths and positions were fixed to the values 
taken from the fit in the upper panel.

Table 1
Resonance parameters determined by fitting the spectrum of the 
52K(p,2p)51Ar→50Ar+n reaction channel. E0 is the central resonance energy, 
	 is the energy-dependent apparent width, l is the deduced orbital angular mo-
mentum of the resonance. The statistical confidence (C ) of the peaks is also
indicated.

E0

(keV)
	

(keV)
l C

92(4) 69(11) 0 41.5σ
271(13) 272(37) 0 35.2σ
1040(12) 324(37) 1 47.8σ
1449(35) 361(156) 3 17.4σ
1883(56) 297(120) 1 7.9σ
2386(43) 391(172) 1 13.3σ

tioned one but keeping E0 , 	 and l fixed to the values derived 
from the fit of the spectrum in the upper panel. The χ2

υ = 1.50
value shows that our proposal of four resonances might be valid, 
however, the spectrum could also be fitted well with an as-
sumption of three (271 keV, 1040 keV, 1494 keV) or even five 
(271 keV, 1040 keV, 1494 keV, 1883 keV, 2386 keV) peaks. In con-
clusion, this analysis unambiguously establishes an excited state 
at Ex

1 = Sn + 92 keV decaying to the ground state of 50Ar and 
two states at Ex

2 = Sn + 271 keV + 1178 keV = Sn + 1449 keV 
and Ex

3 = Sn + 1040 keV + 1178 keV = Sn + 2218 keV decaying 
through the first excited state in 50Ar (1178 keV [16]). Due to 
the low statistics in the lower panel of Fig. 2, we can only ten-
tatively establish the three other states at Ex = Sn + 2386 keV, 
4

4

Ex
5 = Sn + 1494 keV + 1178 keV = Sn + 2672 keV and Ex

6 = Sn +
1883 keV+1178 keV = Sn +3061 keV. The exclusive cross sections 
for the six states were obtained to be 0.93(12) mb, 1.54(24) mb, 
1.56(20) mb, 0.35(12) mb, 0.7(3) mb and 0.23(9) mb, respectively.

To compare the experimental findings with theory, shell-model 
calculations were performed in the sd-pf valence space employ-
ing effective interactions of SDPF-MUs Hamiltonian introduced in 
Ref. [43] which is based on the SDPF-MU Hamiltonian [44,45]
fine-tuned to take into account experimental data in this region 
of nuclei, such as 49K [46,47], 51K, 53K [43] and 54Ca [21]. This 
new SDPF-MUs Hamiltonian includes a shift of the original T = 0
central force monopole strength between the proton s1/2 and neu-
tron p1/2 orbitals as well as between the proton s1/2 and neutron 
p3/2 orbitals in order to better describe the experimental results 
for 51K and 53K. Additionally, the neutron f 2

5/2 pairing matrix ele-

ment was also shifted a little to better match the 2+ energies in 
the Ca isotopes. The spin/parity of the ground state of 52K was 
not unambiguously determined experimentally. A β-decay study 
excluded the 0− , and proposed the 2− assignment [48] but the 
1− was also found to be possible by our shell-model calculations. 
Therefore, when dealing with the (p,2p) reaction, both the 1− and 
the 2− scenarios were considered.

The output of the shell-model calculations regarding the level 
and decay scheme is shown in the left part of Fig. 3. The char-
acteristics of the theoretical states are listed in Table 2. Since the 
neutron separation energy is not known for 51Ar, the calculated 
theoretical value of 1.57 MeV is plotted in Fig. 3, and the energy 
of the experimental states are also placed relative to this Sn . It 
is worth noting that the mass systematics gives a similar Sn of 
1.4(7) MeV [39].

To compare the exclusive cross sections deduced from the ex-
periment, we calculated the single-particle cross sections for the 
(p,2p) reaction within the distorted wave impulse approxima-
tion (DWIA) framework [49]. The single-particle wave function 
and the nuclear density were obtained by the Bohr-Mottelson 
single-particle potential [50]. The optical potentials for the dis-
torted waves in the initial and final channels were constructed by 
the microscopic folding model [51] with the Melbourne g-matrix 
interaction [52] and the calculated nuclear density. The spin-orbit 
part of each distorting potential was disregarded, which introduced 
an uncertainty of about 5% for the cross sections. As for the pp in-
teraction, the Franey-Love effective interaction [53] was adopted. 
These theoretical cross sections were combined with the spectro-
scopic factors of our shell-model calculations and averaged over 
the beam energy covered by our target similar to the experimen-
tal exclusive cross sections. The resulting theoretical cross sections 
with Jπ = 2− (52K g.s.) for the relevant states are listed in Table 3
and also indicated next to the levels in Fig. 3.

The shell-model calculations provide two bound excited states 
(975 keV, 1117 keV) which are very close in energy to the pro-
posed observed levels (963 keV, 1180 keV). Moreover, the calcu-
lated cross sections are also in a fair agreement with the experi-
mental ones. This suggests that our assumption, i.e., the observed 
transitions do not form a cascade but are parallel to each other, is 
valid. The small experimental cross sections (46 μb, 102 μb) show 
that these states are dominated by neutron excitations across the 
shell gaps at neutron numbers 32 and 34 since they are weakly 
populated by the (p,2p) reaction. Likewise, the observed inclusive 
cross section of 0.62(2) mb and the theoretical one of 1.15 mb 
agree reasonably well. However, we note that an assignment op-
posite to the one in Fig. 3 can not be excluded for the two bound 
states, i.e., Jπ = 5/2−

1 might belong to the observed 963-level and 
Jπ = 3/2−

1 to the observed 1180-level. This good match between 
the experimental results and the shell-model predictions suggests 
that the shell gaps at N = 32 and N = 34 are indeed large, as im-
plied by the shell-model calculations, which is illustrated in Fig. 4
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Fig. 3. Partial level and decay scheme of 51Ar up to the expected two-neutron separation energy of 5.6(7) MeV [39]. The two observed bound excited states with their decay 
and relative γ -ray intensities corrected for the efficiency of the DALI2+ array are shown below the neutron separation energy of 1570 keV taken from our shell-model 
calculation. Three further unbound excited states were also established by the experiment and three tentatively placed excited states are also plotted with dashed lines 
together with their decay either to the ground state or the first excited states of 50Ar. The numbers on the right hand side of the levels indicate the extracted exclusive cross 
section in the 52K(p,2p)51Ar reaction. The experimental data are compared with our shell-model calculations with Jπ = 2− (52K g.s.). The calculated γ -ray branching ratios 
are also written next to the downward arrows. Only those states are displayed for which the calculated (p,2p) cross section is above 0.1 mb. The four lowest excited states 
observed in the experiment could be matched with counterparts in the shell-model level scheme but it should be noted that the two bound states can also be assigned 
inversely to the theoretical ones. The cross section values left hand side of the theoretical levels were derived from the spectroscopic factors and the theoretical single-particle 
cross sections.
for the N = 32 isotones. As protons are removed from the pro-
ton f7/2 orbital, the neutron f5/2 orbital increases rapidly. The 
neutron p3/2 and p1/2 orbitals also moderately increase keeping 
their energy splitting nearly constant, and as a consequence sub-
shell gaps at neutron numbers 32 and 34 emerge in Ca and Ar 
isotopes.

It is noted that the Jπ = 1− (52K g.s.) scenario gives similar 
results with a particular difference in the calculated cross section 
value of 709 μb for the 5/2−

1 level contradicting the experimental 
data, which supports the 2− assignment for the ground state of 
52K.

Looking at the characteristics of the calculated unbound states 
in Table 2, it is obvious that the 5/2−

2 and 5/2−
6 levels significantly 

differ from the 5/2−
1 level (and from the other calculated 5/2− lev-

els) if we consider the z-component (taking J z = J ) of their angu-
lar momentum (Lz) values. For these two unbound states, the large 
Lz values indicate significant proton contribution to the excita-
tion, which is also reflected in the sizable calculated cross sections 
(2.64 mb, 1.97 mb). We propose to assign our observed states at Ex
1

5

and Ex
2 to the theoretical 5/2−

2 and 5/2−
6 levels, respectively based 

on the observed large cross sections (0.93(12) mb, 1.54(24) mb) 
comparable to the theoretical ones. Regarding the calculated un-
bound 3/2− levels, it can be seen that all of them show somewhat 
more proton dominance over the 3/2−

1 one based on the Lz val-
ues. Besides, the 3/2−

7 state is notable because the z-component 
(taking J z = J ) of its spin (Sz) is also large. This also shows up in 
the calculated substantial cross section (0.85 mb). The energy and 
the cross section of the observed state (Ex

3, 1.56(20) mb) indicate 
that it might be the counterpart of the theoretical 3/2−

7 level how-
ever, due to the resolution in Erel , it cannot be excluded that some 
other nearby theoretical levels contribute. The collective property 
of the mentioned higher-lying states (especially for 5/2−

2 , 5/2−
6 ) 

can also be seen by comparing their calculated B(E2) values of 
53 e2fm4 and 14 e2fm4 to that of the individual-particle 5/2−

1
state of only 5 e2fm4. Such a collective behavior is also present 
for several higher-lying 3/2− states but not so emphasized. For 
the remaining three other observed states, no corresponding theo-
retical levels can be determined because their energy is uncertain 
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Table 2
The z-component (taking J z = J ) of spin (Sz) and of angular momentum (Lz) together with the occupation number of nucleon orbitals for the theoretical states (Etheor ) from 
our shell-model calculations. Only those excited states are shown for which the theoretical (p,2p) cross section exceeds 0.1 mb.

Etheor

(MeV)
Jπ Nucleon 

type
Sz Lz Orbits

d5/2 d3/2 s1/2 f7/2 f5/2 p3/2 p1/2

0 1/2−
1 π −0.004 0.025 5.83 2.46 1.72 0 0 0 0

ν −0.131 0.610 6 4 2 7.78 0.40 3.77 1.04
0.975 3/2−

1 π −0.014 0.216 5.82 2.65 1.53 0 0 0 0
ν 0.243 1.055 6 4 2 7.69 0.47 3.18 1.67

1.117 5/2−
1 π −0.009 0.199 5.78 2.66 1.56 0 0 0 0

ν −0.181 2.491 6 4 2 7.58 1.22 3.25 0.95
1.826 5/2−

2 π −0.046 1.439 5.83 2.68 1.49 0 0 0 0
ν −0.185 1.291 6 4 2 7.69 0.68 3.59 1.04

2.088 3/2−
2 π −0.016 0.785 5.77 2.80 1.43 0 0 0 0

ν 0.131 0.599 6 4 2 7.42 1.53 3.23 0.82
2.884 5/2−

3 π −0.007 0.344 5.79 2.73 1.48 0 0 0 0
ν 0.062 2.101 6 4 2 7.53 1.43 3.03 1.01

3.181 5/2−
4 π −0.036 0.373 5.79 2.66 1.55 0 0 0 0

ν −0.073 2.236 6 4 2 7.43 1.25 3.34 0.99
3.268 3/2−

4 π −0.091 0.924 5.83 2.60 1.57 0 0 0 0
ν 0.095 0.572 6 4 2 7.59 0.91 3.44 1.05

3.368 3/2−
5 π −0.033 0.848 5.85 2.61 1.54 0 0 0 0

ν 0.059 0.626 6 4 2 7.70 0.88 3.09 1.33
3.459 5/2−

6 π −0.081 1.269 5.86 2.67 1.47 0 0 0 0
ν −0.132 1.443 6 4 2 7.67 0.83 3.53 0.97

3.980 9/2−
2 π −0.037 1.261 5.78 2.59 1.63 0 0 0 0

ν −0.066 3.342 6 4 2 7.46 1.28 3.42 0.85
3.981 5/2−

7 π −0.016 0.914 5.82 2.75 1.43 0 0 0 0
ν −0.002 1.605 6 4 2 7.53 1.14 3.10 1.22

4.087 3/2−
7 π −0.219 0.908 5.85 2.89 1.26 0 0 0 0

ν 0.025 0.787 6 4 2 7.54 1.26 3.33 0.87
4.137 9/2−

3 π −0.019 1.043 5.76 2.74 1.51 0 0 0 0
ν 0.153 3.323 6 4 2 7.20 1.75 3.11 0.94

4.141 5/2−
8 π −0.010 0.616 5.81 2.75 1.44 0 0 0 0

ν −0.171 2.065 6 4 2 7.46 1.38 3.03 1.14
4.229 3/2−

8 π −0.174 0.798 5.87 2.75 1.38 0 0 0 0
ν 0.067 0.810 6 4 2 7.63 0.92 3.37 1.09

4.363 3/2−
9 π −0.048 0.368 5.81 2.80 1.39 0 0 0 0

ν 0.033 1.147 6 4 2 7.51 1.23 3.01 1.25
4.527 3/2−

10 π −0.060 0.367 5.89 2.88 1.23 0 0 0 0
ν 0.102 1.090 6 4 2 7.75 0.66 3.23 1.36

4.988 9/2−
6 π −0.067 1.068 5.78 2.57 1.65 0 0 0 0

ν −0.135 3.635 6 4 2 7.60 1.35 3.23 0.82
5.361 9/2−

8 π −0.004 0.707 5.73 2.70 1.57 0 0 0 0
ν −0.068 3.865 6 4 2 7.30 1.73 3.09 0.87
Fig. 4. Change of effective single-particle orbitals at N = 32 as the proton number 
decreases toward the dripline.

due to their questionable existence in the Erel spectrum in coinci-
dence with the 1178-keV γ ray in 50Ar as well as the density of 
theoretical states at high energies.
6

4. Summary

The 51Ar, lying between the possible N = 32 and N = 34 sub-
shell closures predicted by theoretical calculations and suggested 
by some earlier experimental works, was studied via the (p,2p) re-
action. Its low-lying level structure, unexplored until now, was es-
tablished using γ -ray spectroscopy and the invariant mass method. 
The observed two bound states were populated very weakly which 
is a clear indication that they are mainly formed by promoting a 
neutron across the shell gaps at N = 32 and N = 34. Therefore, 
this is in line with the previous results [16,24], i.e., the subshells 
gaps at N = 32 and N = 34 are substantial in argon isotopes. 
Some of the detected unbound states were populated with large 
cross sections, which turned out to have collective behavior ac-
cording to our shell model calculations. This means that 51Ar is an 
atomic nucleus in which individual-particle and collective states 
coexist.
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Table 3
Theoretical level energies (Etheor ), spectroscopic factors, exclusive cross sections for the reaction 
52K(p,2p)51Ar (σtheor ) in comparison with experimental level energies (Eexpt ) and cross sections (σexpt ) 
up to the expected two neutron separation energy of 5.6(7) MeV [39]. The level energies and spec-
troscopic factors originate from our shell-model calculations with Jπ = 2− (52K g.s.) while the cross 
sections are obtained by combining the DWIA cross sections and the spectroscopic factors. The uncer-
tainty in the DWIA framework and its input is about 20% as discussed in Ref. [49]. Only those excited 
states are shown for which the theoretical (p,2p) cross section exceeds 0.1 mb. Regarding the exper-
imental data, four states could be matched with theoretical levels. However, the assignments of the 
lowest two excited states are ambiguous since they can be swapped.

Etheor

(MeV)
Jπ Spectroscopic factor σtheor

(mb)
Eexpt

(MeV)
σexpt

(mb)

0 1/2−
1 <0.01 d5/2 0.82 0 0.47(3)

0.37 d3/2

0.975 3/2−
1 <0.01 d5/2 0.149 0.963(9) 0.046(14)

0.04 d3/2

0.02 s1/2

1.117 5/2−
1 0.07 d5/2 0.177 1.180(9) 0.102(18)

<0.01 d3/2

<0.01 s1/2

1.826 5/2−
2 0.01 d5/2 2.64 Sn + 0.092(4) 0.93(12)

0.67 d3/2

0.38 s1/2

2.088 3/2−
2 0.06 d5/2 0.17

0.01 d3/2

0.01 s1/2

2.884 5/2−
3 <0.01 d5/2 0.33

0.14 d3/2

0.01 s1/2

3.181 5/2−
4 <0.01 d5/2 0.86

0.37 d3/2

0.03 s1/2

3.268 3/2−
4 <0.01 d5/2 0.28

0.13 d3/2

<0.01 s1/2

3.368 3/2−
5 <0.01 d5/2 0.23

0.09 d3/2

0.01 s1/2

3.459 5/2−
6 <0.01 d5/2 1.97 Sn + 1.449(35) 1.54(24)

0.49 d3/2

0.31 s1/2

3.980 9/2−
2 <0.09 d5/2 0.20

3.981 5/2−
7 <0.01 d5/2 0.38

0.03 d3/2

0.11 s1/2

4.087 3/2−
7 <0.01 d5/2 0.85

0.02 d3/2

0.28 s1/2

4.137 9/2−
3 0.05 d5/2 0.11

4.141 5/2−
8 <0.01 d5/2 0.28

0.08 d3/2

0.03 s1/2

4.229 3/2−
8 <0.01 d5/2 0.44

<0.01 d3/2

0.15 s1/2

4.363 3/2−
9 <0.01 d5/2 0.20

<0.01 d3/2

0.06 s1/2

4.527 3/2−
10 <0.01 d5/2 0.36

<0.01 d3/2

0.11 s1/2

4.988 9/2−
6 0.08 d5/2 0.19

5.361 9/2−
8 0.09 d5/2 0.20
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fanini, W. Królas, T. Pawłat, B. Szpak, et al., Phys. Rev. C 82 (2010) 034319.

[47] J. Papuga, M.L. Bissell, K. Kreim, K. Blaum, B.A. Brown, M. De Rydt, R.F. Garcia 
Ruiz, H. Heylen, M. Kowalska, R. Neugart, et al., Phys. Rev. Lett. 110 (2013) 
172503.

[48] F. Perrot, F. Maréchal, C. Jollet, P. Dessagne, J.-C. Angélique, G. Ban, P. Baumann, 
F. Benrachi, U. Bergmann, C. Borcea, et al., Phys. Rev. C 74 (2006) 014313.

[49] T. Wakasa, K. Ogata, T. Noro, Prog. Part. Nucl. Phys. 96 (2017) 32.
[50] A. Bohr, B. Mottelson, Nuclear Structure, vol. I, Benjamin, New York, 1969.
[51] M. Toyokawa, K. Minomo, M. Yahiro, Phys. Rev. C 88 (2013) 054602.
[52] K. Amos, P. Dortmans, H. von Geramb, S. Karataglidis, J. Raynal, Adv. Nucl. Phys. 

25 (2000) 275.
[53] M.A. Franey, W.G. Love, Phys. Rev. C 31 (1985) 488.
8

http://refhub.elsevier.com/S0370-2693(21)00048-4/bibE61CA4F133268DB304E3B7A1E0079FABs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib53D33BECF25E8DA3EBDD879FB28A09A2s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibB1CBBF7B7F8B1C27A9145B6BB22EF0A9s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib28C44EC260BBDA49B64A2F2F63191FAAs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib28C44EC260BBDA49B64A2F2F63191FAAs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibDBBD413C12447ECD2B7CF246B9B9A48Fs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibDBBD413C12447ECD2B7CF246B9B9A48Fs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib616D454C48A333B2938A06796C216147s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib616D454C48A333B2938A06796C216147s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib27FD0D1D65B21CAAB1A21230C892AA3Fs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib27FD0D1D65B21CAAB1A21230C892AA3Fs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibE2428ECCE968F8B63A11FF51B9BBAC67s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibE2428ECCE968F8B63A11FF51B9BBAC67s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib371FC7189FC425653FB07C3BF97A7A09s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib371FC7189FC425653FB07C3BF97A7A09s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib371FC7189FC425653FB07C3BF97A7A09s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib33501F1F89A427BD34607959A574604Bs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib33501F1F89A427BD34607959A574604Bs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib93E48E473A0BFC47AAA6A098BD69ECCAs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib93E48E473A0BFC47AAA6A098BD69ECCAs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib3D1AF2CD952218AD6DCF15567422B1C7s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib3D1AF2CD952218AD6DCF15567422B1C7s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib2B898AAA1DC36A80B66BB340F8A3D338s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib2B898AAA1DC36A80B66BB340F8A3D338s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib25C7726815BED032BD222B3583AD4FF5s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib25C7726815BED032BD222B3583AD4FF5s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib25C7726815BED032BD222B3583AD4FF5s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib76B7A3453BDAC239BC3500C0E6931D96s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib76B7A3453BDAC239BC3500C0E6931D96s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib76B7A3453BDAC239BC3500C0E6931D96s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib8AC70A32EBBD4A4E3870CF2DC08705EFs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib8AC70A32EBBD4A4E3870CF2DC08705EFs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib7952403538075B96FD031ED968E22B09s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib7952403538075B96FD031ED968E22B09s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib7952403538075B96FD031ED968E22B09s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib671BA81DB9754BAF98067D4AA8A56382s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib671BA81DB9754BAF98067D4AA8A56382s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibE372B22C91E7630E85106B5570306438s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibE372B22C91E7630E85106B5570306438s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibE372B22C91E7630E85106B5570306438s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib5BE6FCE7978D2BE7FFAE46376666E9FCs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib5BE6FCE7978D2BE7FFAE46376666E9FCs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib2859DF1D6EFDD20098DF65479CAC98D3s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib2859DF1D6EFDD20098DF65479CAC98D3s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib90B71C1C969E17731D126DAAFF79ED5Ds1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib90B71C1C969E17731D126DAAFF79ED5Ds1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib777B0A2B19CAFD246008AF952B2CB680s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib777B0A2B19CAFD246008AF952B2CB680s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibE948F9FB511FF1E18C38941C743A3258s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibE948F9FB511FF1E18C38941C743A3258s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibE948F9FB511FF1E18C38941C743A3258s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib1D3D93E89E25DC641D89620C14DDBA65s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib1D3D93E89E25DC641D89620C14DDBA65s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib3EE840859804F12C427576CC121576B4s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib3EE840859804F12C427576CC121576B4s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib3EE840859804F12C427576CC121576B4s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibE483E2D26A051225179A59D35C0F8AA4s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibE483E2D26A051225179A59D35C0F8AA4s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibE483E2D26A051225179A59D35C0F8AA4s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib7050D73E256C4088FCB5E85AAFF49574s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib7050D73E256C4088FCB5E85AAFF49574s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib7050D73E256C4088FCB5E85AAFF49574s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib5BD6BECFA354A7595F16227C5C6D895Fs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib5BD6BECFA354A7595F16227C5C6D895Fs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib5BD6BECFA354A7595F16227C5C6D895Fs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib15B5074399377B5BBFB2A20CE5020C74s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib15B5074399377B5BBFB2A20CE5020C74s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib15B5074399377B5BBFB2A20CE5020C74s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibBAAEDA5ECA38D63A100EFDF1CFB97BC9s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibBAAEDA5ECA38D63A100EFDF1CFB97BC9s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibBAAEDA5ECA38D63A100EFDF1CFB97BC9s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib2237D78EE0CD7C9DD34737DFF617E62Fs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib2237D78EE0CD7C9DD34737DFF617E62Fs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib3EE1ED2407CBB2AEC5102C0890E68B65s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib3EE1ED2407CBB2AEC5102C0890E68B65s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib3EE1ED2407CBB2AEC5102C0890E68B65s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib01E1B519374C76D1F0C3CAF195FAFEB4s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib01E1B519374C76D1F0C3CAF195FAFEB4s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib01E1B519374C76D1F0C3CAF195FAFEB4s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib6B20FE936B297831CF726ED557BE7828s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib6B20FE936B297831CF726ED557BE7828s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib6B20FE936B297831CF726ED557BE7828s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib6B20FE936B297831CF726ED557BE7828s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib6B20FE936B297831CF726ED557BE7828s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibACE727915B85D7846F901855FA44F536s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibACE727915B85D7846F901855FA44F536s1
https://edms.cern.ch/ui/file/1865739/1/TDR_R3B_NeuLAND_public.pdf
https://edms.cern.ch/ui/file/1865739/1/TDR_R3B_NeuLAND_public.pdf
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibA735CF0B512D4B6C8796E010C80937B1s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibA735CF0B512D4B6C8796E010C80937B1s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibA735CF0B512D4B6C8796E010C80937B1s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibE62210041D12B5A1A3A35D329E257B3Cs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibE62210041D12B5A1A3A35D329E257B3Cs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibB2F55469E13A31F135F878AB4D8EBEC2s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib8102CCE28B1151B0AA1B21B4D107B290s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib8601F6E1028A8E8A966F6C33FCD9AEC4s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib1771943014F71B7DF707838477123C80s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib1771943014F71B7DF707838477123C80s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib1771943014F71B7DF707838477123C80s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibC2488B67C555059C79C963A973223D08s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibC2488B67C555059C79C963A973223D08s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibCCAD820AB2EE733F7161529D29E16183s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibCCAD820AB2EE733F7161529D29E16183s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibF96F181C2103FE66010F89D221187701s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibF96F181C2103FE66010F89D221187701s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibF802C98597ABE3B3968DB0EEF3CC5E64s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibF802C98597ABE3B3968DB0EEF3CC5E64s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibF802C98597ABE3B3968DB0EEF3CC5E64s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib198F8C666BA476BD18403679C19BC504s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib198F8C666BA476BD18403679C19BC504s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib5F1A9836783F294EFE360837FD7A84F8s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib55351AE081762F7BE50265BEFA0268DAs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib5AF222E9D314855DFA93B58D8C2A809Fs1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibDF0BB45E9111229049EE77B72BD61E31s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bibDF0BB45E9111229049EE77B72BD61E31s1
http://refhub.elsevier.com/S0370-2693(21)00048-4/bib16928E2B6309600A6DC2703F83B8161As1

	First spectroscopic study of 51Ar by the (p,2p) reaction
	1 Introduction
	2 Experiment
	3 Results and discussion
	4 Summary
	Declaration of competing interest
	Acknowledgements
	References


