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Level structures of 56,58Ca cast doubt on a doubly magic 60Ca
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Gamma decays were observed in 56Ca and 58Ca following quasi-free one-proton knockout reactions 
from 57,59Sc beams at ≈ 200 MeV/nucleon. For 56Ca, a γ ray transition was measured to be 1456(12) 
keV, while for 58Ca an indication for a transition was observed at 1115(34) keV. Both transitions 
were tentatively assigned as the 2+

1 → 0+
gs decays, and were compared to results from ab initio and 

conventional shell-model approaches. A shell-model calculation in a wide model space with a marginally 
modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for 2+

1 level 
energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of 
a new nuclear shell above the N = 34 shell. Its constituents, the 0 f5/2 and 0g9/2 orbitals, are almost 
degenerate. This degeneracy precludes the possibility for a doubly magic 60Ca and potentially drives the 
dripline of Ca isotopes to 70Ca or even beyond.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
Understanding properties of atomic nuclei at the extremes, 
for example those with large proton-to-neutron imbalances, is of 
paramount importance in nuclear physics. In these systems, often 
called exotic nuclei, new features emerge [1] including those that 
can be traced back to facets of nuclear forces. For instance, the 
tensor force, which has been known for decades [2,3], can modify 
the spin-orbit energy splitting as a function of the proton num-
ber (Z ) or the neutron number (N), resulting in changes of shell 
structures, i.e., shell evolution [4,5]. Examples have been found in 
several regions across the Segrè chart (see review papers, [6,7]). 
Among them, the Ca isotopes provide an exemplary case of shell 
evolution, with striking appearances of the new magic numbers N
= 32 [8–10] and N = 34 [11–14]. The discovery of new magic num-
bers is usually followed by the exploration of the new nuclear shell 
lying above them, which may yield precious hints of the where-
abouts of the dripline [15–17]. This letter presents a finding along 
these lines based on state-of-the-art experimental and theoretical 
studies.

The Ca isotopes correspond to a complete filling of the Z = 20 
shell, leading to a high sensitivity of the shell evolution according 
to the neutron number. Signatures of magicity or sub-shell closures 
have been observed in the Ca isotopes at N = 16, 20, 28, 32, and 
34 based on the steep decrease of the two-neutron separation en-
ergies S2n [10,13] and the enhancement of the excitation energy of 
the first excited state E(2+

1 ) [8,18,12,19]. The ground state of 54Ca 
has been shown, by knockout reactions, to have a closed-shell con-
figuration [14], supporting the N = 34 magicity. Having the N = 34 
magic number thus confirmed, the nexus of interest is the shell 
above it. If the shell is composed only of the 0 f5/2 orbital, the 
recently observed 60Ca [20] may be doubly magic and become a 
dripline nucleus. However, if the orbitals above 0 f5/2 contribute 
substantially, the dripline can be located deep into the terra incog-
nita of the Segrè chart. The influence of the gds orbitals above the 
pf shell is often discussed in the literature when neutron-rich Ca, 
Ti, and Ni isotopes are addressed [21–26]. There are, however, no 
experimental data probing this shell in the Ca isotopes.

Theoretical predictions of the level structure of Ca isotopes 
beyond 54Ca and the location of the dripline have been made 
by modern shell-model, ab initio, beyond mean field calculations, 
and energy density functionals [21,22,27–34,16,35]. There seems 
to be no sign of convergence or consistency of such predictions 
for the level structure of 56,58Ca, as discussed later. In fact, the 
predicted values of E(2+

1 ) for 56,58Ca range from 0.5 to 2 MeV 
[27,31,32,30,28,33,34]. Such a large variance prevents useful in-
sights or conclusions regarding the shell structure beyond the 
N = 34 (sub-)shell closure. Recent predictions of a newly devel-
oped fitted interaction within the f p-model space, tailored for 
the neutron-rich Ca isotopes, imply 60Ca being doubly magic at 
a similar level to 68Ni [34,36]. This prediction is, however, strongly 
2

dependent on the agreement to experimental data for 55–59Ca 
[34,36]. The closest isotone along N = 40 with experimental in-
formation, 62Ti, showed no indication for a new magic number 
[26], in agreement with the predictions presented in Ref. [37]. 
This letter reports on the first measurement of excitation energies 
of 56,58Ca by means of in-beam γ -ray spectroscopy. Experimental 
data were confronted with modern shell-model and ab initio calcu-
lations combined with reaction theory.

The experiment was carried out at the Radioactive Isotope 
Beam Factory, operated by the RIKEN Nishina Center and the Cen-
ter for Nuclear Study, the University of Tokyo. Radioactive beams 
were produced by fragmentation of a 70Zn beam at 345 MeV/nu-
cleon on a 10-mm-thick 9Be target. The 57,59Sc isotopes were then 
separated and identified from focal plane F0 to F13 of the BigRIPS 
separator [38]. Afterwards, the secondary beams with intensities 
of 13.6 particles/s for 57Sc and 0.3 particles/s for 59Sc impinged 
on the MINOS liquid-hydrogen (LH2) target [39] to induce proton 
knockout reactions. Reaction residues, 56,58Ca, were identified by 
the SAMURAI spectrometer [40]. Secondary beam energies at the 
target center were 209 MeV/nucleon for 57Sc and 199 MeV/nu-
cleon for 59Sc, inducing considerable Doppler shifts for the emitted 
γ rays. The DALI2+ detector array [41] was used to measure the 
de-excitation γ rays. To overcome the large Doppler broadening 
partially caused by the long LH2 target, Doppler corrections were 
performed using the reaction vertex information reconstructed by 
the MINOS time projection chamber. For further experimental de-
tails, the interested reader is referred to the supplemental material.

The Doppler-corrected γ -ray spectrum in coincidence with the 
57Sc(p,2p)56Ca reaction is shown in Fig. 1a. A single peak is ob-
served at 1456(12) keV and tentatively assigned to the 2+

1 →
0+

gs transition. Energy uncertainties are dominated by the fitting 
error and energy calibration. Lifetime effects on the measured 
energies were also evaluated. The heaviest Ca isotope with a 
known B(E2)↑ is 50Ca [42]. Assuming the same transition strength, 
37.5(10) e2 fm4, for 56Ca gives a lifetime of 17 ps. This lifetime 
value was adopted with an error of 100% and taken into account 
in the error determination.

Despite low statistics, the Doppler-corrected γ -ray energy spec-
trum of the 59Sc(p,2p)58Ca, shown in Fig. 1b, revealed a peak-like 
structure in the energy range of 1000–1200 keV. To test the signif-
icance level of this peak, a maximum likelihood fit procedure was 
applied to the unbinned data (see bottom of Fig. 1b). The back-
ground in this spectrum was modeled from the 57Sc(p,2p)56Ca 
reaction, with the amplitude normalized according to the event 
numbers. This procedure was validated with the 55Sc(p,2p)54Ca 
data from the same experiment, which yielded a good descrip-
tion of the background. A significance of 2.8 σ , defined as the 
peak amplitude over the statistical uncertainty from the maximum 
likelihood fit, was obtained for the tentative 1115(34) keV γ -ray 
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Fig. 1. Doppler-corrected γ -ray spectra. a, Spectrum in coincidence with the 
57Sc(p,2p)56Ca reaction. b, Spectrum in coincidence with the 59Sc(p,2p)58Ca reac-
tion restricted to γ multiplicity ≤ 5 (spectra with other multiplicities are shown 
in Fig. 3 of supplemental material). Spectra were fitted with simulated DALI2+ re-
sponse functions (red) with a two-exponential background (black). Poisson-statistics 
errors were adopted for the data points. Unbinned data are shown in the bottom of 
panel b for the 59Sc(p,2p)58Ca channel. The response curve for an assumed 1400 
keV γ -ray transition with a theoretical cross section of 0.25 mbarn is indicated for 
58Ca by the gray dashed line.

transition, including systematic errors from lifetime effects, and 
tentatively assigned to the 2+

1 → 0+
gs decay of 58Ca. The assumed 

lifetime is 66 ps based on the same assumption as 56Ca. Notewor-
thy are the two counts observed at ∼1400 keV, comparable to the 
E(2+

1 ) of 56Ca. However, taking into account calculated theoretical 
cross sections, as discussed below, resulted in a poor overall agree-
ment of the response function with the data, as evidenced by the 
gray dashed line in Fig. 1b. Further tests for the validity and the 
impact of the 58Ca data is discussed in the supplemental material.

The systematics of E(2+
1 ) values as a function of neutron num-

ber presented in Fig. 2a evince the expected pattern for magic 
nuclei at N = 28: A sharp increase from N = 26 to 28 followed by a 
large reduction at N = 30. Similarly, a characteristic sharp increase 
from N = 30 to 32 exists for the N = 32 magic number, while the 
enhanced E(2+

1 ) at N = 34 is indicative of magicity. The firmly es-
tablished data point for 56Ca and the tentative one for 58Ca are as 
low as the N = 22, 24, 26, and 30 values, with a decrease from N
= 36 to 38.

The E(2+
1 ) systematics of Ca isotopes were compared to con-

ventional shell-model calculations with the GXPF1Bs Hamiltonian 
in the model space of the full pf shell [14,22], and two state-of-
the-art ab initio approaches: The valence-space in-medium simi-
larity renormalization group (VS-IMSRG) [43–46] and the coupled-
cluster theory (CC) [47], both employing the two- (NN) and three-
nucleon (3N) interaction 1.8/2.0 (EM) [48], derived from chiral ef-
fective field theory [49]. Details of these theoretical approaches are 
provided in the supplemental material. Fig. 2a shows the theoret-
ical calculations well describe the E(2+

1 ) excitation energies up to 
N = 34, and the GXPF1Bs Hamiltonian also provides a good agree-
3

Fig. 2. Comparison of calculated E(2+
1 ) and S2n values with experimental data. a, 

E(2+
1 ) systematics in even-even Ca isotopes confronted with theoretical approaches: 

The shell model using the GXPF1Bs Hamiltonian, the VS-IMSRG method, and CC 
calculations. b, E(2+

1 ) systematics in even-even Ca isotopes, and their differences 
(inset). Experimental points are the same as a. The calculated values are obtained 
by the original A3DA-m Hamiltonian as well as its revised one (A3DA-t) c, S2n sys-
tematics in even-even Ca isotopes. Also shown in b and c are the effect of shifting 
the neutron 0g9/2 orbital for predictions of A3DA-t.

ment with the present experimental value for 56Ca. However, all 
these calculations predict a flat behavior from N = 36 to 38.

A more general discussion provides an instructive viewpoint of 
the E(2+

1 ) values of 56,58Ca. If the 0 f5/2 orbital is isolated from the 
other orbitals, N = 36 corresponds to a system of two neutrons 
solely occupying the 0 f5/2 orbital. Likewise, N = 38 would be four 
neutrons in the 0 f5/2 orbital, or, equivalently, two neutron holes 
of the fully occupied 0 f5/2 orbital. The two-body interaction is in-
variant between particle and hole systems, but the single-particle 
energies can vary with neutron number. Such changes of single-
particle energies do not affect excitation level energies, because 
only one orbital is relevant. Thus, assuming the 0 f5/2 neutron or-
bital is marginally modified between 56Ca and 58Ca, the E(2+

1 )

value should be identical between N = 36 and N = 38 as a con-
sequence of this particle-hole symmetry. It is emphasized that this 
consequence is independent of the choice of the two-body interac-
tion.

The present results indicate a decrease of E(2+
1 ) from N = 36 

to 38 by several hundred keV. This observation conflicts with the 
arguments above, implying a non-isolated 0 f5/2 orbital. Since all 
experimental evidence supports an N = 34 magic number in the 



S. Chen, F. Browne, P. Doornenbal et al. Physics Letters B 843 (2023) 138025
Ca isotopes, the 0 f5/2 orbital is considered as isolated from lower-
energy orbitals. This points to the other possibility that the 0 f5/2
orbital is coupled to higher orbitals, suggesting a shell comprising 
the 0 f5/2 orbital and at least one higher orbital. This new shell 
has never been discussed and its appearance excludes the N = 40 
magic number in Ca isotopes.

A previous theoretical study has discussed an “sdg” shell built 
on an inert 60Ca core [24]. This approach proved valid for the 78Ni 
region, but remains untested for the Ca isotopes. In the present 
work, only the characteristics of the 0g9/2 and 1d5/2 orbitals can 
be constrained by experiment. As the protons can be assumed to 
form a Z = 20 closed shell, only neutrons above N = 20 are treated 
as valence nucleons in the calculations.

The existing effective A3DA-m [23] N N interaction, defined for 
a model space comprising the full pf shell, the 0g9/2, and 1d5/2
orbitals, is used as a starting point. It has been successfully used 
for the systematic descriptions of Ni (Z = 28) [23] and Cu (Z = 
29) [50] isotopes. Fig. 2b shows that the observed E(2+

1 ) values 
are well reproduced by the A3DA-m interaction up to N = 34, and 
substantial deviations for N = 36 and 38. The excitation-energy 
lowering from N = 36 to 38 is well reproduced by the A3DA-m in-
teraction, in contrast to trends shown in Fig. 2a. This suggests a 
minor revision of the interaction may be sufficient to reproduce 
the experimental data. Fig. 2c shows the S2n values for the Ca 
isotopes. There is no notable deviation for the nuclei where ex-
perimental data are available, implying the validity of the A3DA-m 
interaction.

The A3DA-m interaction is revised by varying only the two-
body-matrix-elements (TBME) in the linear combination (LC) 
method [51,52] to better reproduce the E(2+

1 ) values of 54,56,58Ca. 
Changes to the TBMEs are small, as expected. The maximum 
change is 0.198 MeV, while the others are much smaller. The cor-
relation between the original TBMEs and the revised TBMEs are 
shown in the supplemental material.

The revised interaction is labeled “A3DA-t” hereafter. Fig. 2b de-
picts the E(2+

1 ) values obtained with the A3DA-m and the A3DA-t 
interactions from 42Ca to 74Ca, with A3DA-t reproducing the E(2+

1 )

values of 56,58Ca. The E(2+
1 ) value remains almost constant un-

til 68Ca, where the value for 70Ca rises due to the filled 0 f5/2-
plus-0g9/2 shell and the necessity of neutron excitations to the 
high-lying 1d5/2 orbital. As orbitals above this are not included, 
the present work cannot describe excitation energies much beyond 
70Ca.

Fig. 2c shows S2n values up to 76Ca, the last possible nucleus 
in the present model space. A plateau is formed from 56Ca to 70Ca. 
Beyond this, S2n becomes negative, implying the dripline is located 
at 70Ca, close to some predictions [53,15], beyond others [54] or 
within argued ranges [20,16,35]. Inclusion of higher sdg orbitals 
may slant the dripline even further due to quadrupole correla-
tions [24,25]. As noted in Ref. [24], neutrons in higher sdg orbitals 
can enhance quadrupole collectivity, which may lead to a well-
deformed ground state of 70Ca.

The sensitivity of the neutron 0g9/2 single-particle-energy (SPE) 
was characterized by varying it up to ±2 MeV with respect to the 
original value of the A3DA-t interaction. Results of this can be seen 
in Fig. 2b for the E(2+

1 ) and in Fig. 2c for the S2n . Of particu-
lar interest is the difference of E(2+

1 ), defined as �E = E(2+
A ) -

E(2+
A−2) and shown in the inset of Fig. 2b. The larger the neutron 

0g9/2 SPE, the larger the drop from 54Ca to 56Ca, producing a lo-
cal E(2+

1 ) maximum for 60Ca and shifting the dripline to 62Ca. A 
positive shift of +1 or +2 MeV can be excluded from the exper-
imental E(2+

1 ) and S2n of 56Ca. Conversely, a too low 0g9/2 SPE 
value quenches the experimentally established magicity at N = 34 
[12–14], resulting in a high neutron 0g9/2 occupation number not 
observed in 54Ca [14]. Our results obtained from 56Ca challenge 
4

Fig. 3. a, Occupation numbers of the ground states of even-even Ca isotopes ob-
tained from the A3DA-t interaction. b, Effective single-particle energies for the same 
states as panel a. The numbers in the circles are the neutron numbers correspond-
ing to the magic gaps.

the notion of an N = 40 magicity at 60Ca and are reinforced by the 
tentative experimental value for 58Ca, as all �E remain negative 
except for the 0g9/2 SPE shifted by +2 MeV.

The occupation number of each single-particle orbital is shown 
in Fig. 3a. Likewise, the ESPE [7] are displayed in Fig. 3b. The shell 
structure above N = 34 is clearly characterized by two orbitals, 
0 f5/2 and 0g9/2, which remain almost degenerate across the range 
shown in Fig. 3b. Thus, the emergence of a new shell above N = 
34 comprising 0 f5/2, 0g9/2 orbitals and some others, like 1d5/2, is 
evident. The N = 34 magic gap decreases beyond A = 60, but has 
little affect because the 1p1/2 orbital remains almost completely 
occupied. This degeneracy is lifted for isotopes with Z > 20 due to 
the strong monopole attraction between a proton in 0 f7/2 and a 
neutron in 0 f5/2 [7].

Further discussions are concentrated on the cross sections. In-
clusive cross sections for the 57Sc(p,2p)56Ca and 59Sc(p,2p)58Ca 
reactions were measured to be 1.23(5) and 1.14(15) mb, respec-
tively. Partial cross sections of the excited states were extracted 
using the efficiency-corrected γ -ray intensities, and those to the 
ground-states deduced by subtraction. All measured cross sections 
are summarized in Table 1. Inclusive and partial cross sections 
were comparable between both nuclei, lending support to the as-
signment of a peak in 58Ca.

Theoretical cross sections were obtained by combining single-
particle cross sections σ sp calculated from the distorted-wave im-
pulse approximation (DWIA) and the spectroscopic factors C2 S
from the GXPF1Bs and A3DA-t Hamiltonians, and VS-IMSRG ap-
proach described above [55]. They are listed in Table 1. The beams 
of ground-state 57,59Sc have assumed Jπ = 7/2− . Only removal 
from the proton 0 f7/2 orbital was considered, as higher-lying pro-
ton orbitals contributed only a few percent to the final states. 
Negligible cross sections were calculated to states other than the 
listed 0+

g.s. , 2
+
1 , and 4+

1 states.
Similar inclusive cross sections for both reaction channels were 

predicted, as observed experimentally, and with σ exp-to-σ th ra-
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Table 1
Observed excitation energies (Eexp) in keV and cross sections (σ exp) in mbarn from the 57Sc(p,2p)56Ca and 59Sc(p,2p)58Ca reaction channels compared to theoretical values 
(σ th) using the DWIA calculated single-particle cross sections (σ sp) and spectroscopic factors (C2 S) from VS-IMSRG, GXPF1Bs, and A3DA-t. Predicted spin-parities ( Jπ ), 
associated proton-removal orbitals (nl j ), and excitation energies (Ex) are also provided.

Experiment DWIA VS-IMSRG GXPF1Bs A3DA-t

Eexp σ exp Jπ nl j σsp Ex C2 Sth σ th Ex C2 Sth σ th Ex C2 Sth σ th

56Ca
0 0.80(6) 0+

g.s. 0 f7/2 1.80 0 0.61 1.10 0 0.69 1.24 0 0.62 1.11
1456(12) 0.43(4) 2+

1 0 f7/2 1.74 1002 0.29 0.50 1416 0.25 0.44 1519 0.27 0.47
4+

1 0 f7/2 1.73 1307 0.05 0.09 1776 0.02 0.04 2339 0.01 0.02
Inclusive 1.23(5) 1.69 1.72 1.60

58Ca
0 0.66(24) 0+

g.s. 0 f7/2 1.58 0 0.80 1.26 0 0.83 1.31 0 0.46 0.73
1115(34) 0.47(19) 2+

1 0 f7/2 1.54 1075 0.16 0.25 1382 0.15 0.23 1040 0.42 0.65
4+

1 0 f7/2 1.52 1423 0.001 0.002 1772 0.001 0.002 2084 0.05 0.08
Inclusive 1.14(15) 1.51 1.54 1.46
tios ∼0.75, agreeing with previous values obtained in the region 
[26,56,57] and for stable nuclei [58]. This signifies a low occupa-
tion number of protons across the Z = 20 shell in the ground states 
of 57,59Sc, hence a good proton shell closure. A different picture is 
observed for the partial cross sections to the 2+

1 states. While the 
σ exp-to-σ th ratio holds for 56Ca, despite considerable uncertain-
ties, the experimental partial cross section for 58Ca is two times 
larger than the value predicted by the GXPF1Bs and VS-IMSRG cal-
culations. In contrast, the A3DA-t Hamiltonian gives results in good 
agreement with experiment: Partial cross sections change from N
= 36 to 38 in a consistent manner with experiment.

In conclusion, the first spectroscopy measurements for 56,58Ca 
following the 1p-knockout reactions from scandium isotopes were 
carried out. A γ ray transition associated with the 2+

1 → 0+
gs de-

cay was assigned for 56Ca and an indication of this transition was 
observed for 58Ca. A comparison with standard shell-model and ab 
initio theoretical calculations exhibits a notable deficiency in their 
descriptions of nuclear structure around N = 40. The particle-hole 
symmetry argument robustly leads to a new shell comprising at 
least the 0 f5/2 and 0g9/2 orbitals above N = 34. The fitted A3DA-t 
interaction, introduced in this work, shows an excellent description 
of so far known experimental data, and predicts the Ca dripline at 
N = 50, because of substantial correlation energies from the pair-
ing between the 0 f5/2 and 0g9/2 orbitals. Thus, the picture of the 
new magic number N = 34 [11–14] becomes more complete with a 
shell built atop of it. More detailed structure information of 56,58Ca 
can be obtained by future measurements with Ge detector arrays 
at next-generation facilities like FRIB [59], notably validation of the 
tentative transition at 1115(34) keV. Additional experimental in-
vestigations of neutron-rich Ca isotopes, such as particle states in 
55Ca from neutron pickup reactions and the spectroscopy of 60Ca, 
not believed to be doubly magic from the assessment of results 
presented here and Ref. [26], would provide key information to 
further characterize the new shell.
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