Magicity of the ⁶⁸Ni Semidouble-Closed-Shell Nucleus Probed by Gamow-Teller Decay of the Odd-*A* Neighbors

W. F. Mueller,¹ B. Bruyneel,¹ S. Franchoo,¹ H. Grawe,² M. Huyse,¹ U. Köster,³ K.-L. Kratz,⁴ K. Kruglov,¹

Y. Kudryavtsev,¹ B. Pfeiffer,⁴ R. Raabe,¹ I. Reusen,¹ P. Thirolf,⁵ P. Van Duppen,¹ J. Van Roosbroeck,¹

L. Vermeeren,¹ W. B. Walters,⁶ and L. Weissman¹

¹Instituut voor Kern-en Stralingsfysica, University of Leuven, B-3001 Leuven, Belgium

²Gesellschaft für Schwerionenforschung, D-64291 Darmstadt, Germany

³Physik-Department, Technische Universität München, D-85748 Garching, Germany

⁴Institut für Kernchemie, University of Mainz, D-55099 Mainz, Germany

⁵Sektion Physik, University of Munich, D-85748 Garching, Germany

⁶Department of Chemistry, University of Maryland, College Park, Maryland 20742

(Received 10 June 1999)

The particle-hole excitations through the N = 40 subshell around ⁶⁸Ni have been studied by the β decay of ⁶⁹Co and ⁶⁹Ni. The half-life of ⁶⁹Co was measured to be 0.22(2) s, and a new β -decaying isomer with a half-life of 3.5(5) s was identified in ⁶⁹Ni. From the decay of the ⁶⁹Ni isomer a 9(4)% mixing of the $\pi p_{3/2}^{+1} \nu p_{1/2}^{-2} \nu g_{9/2}^{+2}$ configuration into the ground state of ⁶⁹Cu can be deduced. Significant polarization of the ⁶⁸Ni core nucleus is observed with the coupling of a single nucleon, which implies a rapid decrease in the stabilizing effect of the N = 40 semimagic shell gap.

PACS numbers: 21.10.-k, 23.20.-g, 23.40.Hc, 27.50.+e

The suitability of treating N = 40 as a subshell closure was initially suggested with the discovery that the first excited state of ⁶⁸Ni (a closed Z = 28 proton shell) has a spin and parity of 0^+ and lies at a higher energy (1770 keV) compared to the first excited states in the even-even neighbors [1,2]. In the shell-model picture, an N = 40 closure can be formed by having a large energy gap between the f-p orbitals ($p_{3/2}$, $f_{5/2}$, and $p_{1/2}$) and the $g_{9/2}$ configuration. Additional evidence that ⁶⁸Ni could be treated as a semidouble-magic nucleus came from results of a deep-inelastic scattering experiment where the first 2^+ state was firmly established at 2033 keV [3]. This value is more than 500 keV higher than corresponding 2^+ states in the even-even neighbors. In addition, these experimenters discovered a 0.86(5) ms 5⁻ isomeric state at 2849 keV, which was interpreted as a $\nu p_{1/2}^{-1} \nu g_{9/2}^{+1}$ broken pair excitation across the N = 40 gap; establishing the size of the energy gap. The size of this gap between the f-p shell and the $g_{9/2}$ orbital is about the order of the pairing energy (Δ) which is ~2 MeV. Conversely, full shell closures have single-particle energy gaps >3 MeV, which is well above Δ . To discriminate from a full shell closure, N = 40 is described as a subshell closure.

While the existence of the N = 40 subshell gap is well established, the persistence of this subshell closure away from ⁶⁸Ni is not clear. This persistence can be learned by studying nuclei around ⁶⁸Ni and has been the goal of many recent experimental programs involving in-beam [4–7] as well as β -decay measurements [8–12]. While the results of many of these experiments suggest that the magicity of the N = 40 subshell rapidly disappears away from ⁶⁸Ni, one of the most compelling sets of data to determine the strength of a shell closure is the level structure one observes when a nucleon particle or hole is coupled to the semidouble-magic core. It is also interesting to note that ⁶⁸Ni closely resembles its valence mirror ⁹⁰Zr which has a closed Z = 40 subshell and a strong N = 50 neutron shell closure. Thus it is also possible to learn about the persistence of the N = 40 stability by comparison to the ⁹⁰Zr region.

In this Letter, we address the question whether the level structure of the nuclei ⁶⁹Ni and ⁶⁹Cu can be interpreted as the coupling of a particle or hole to the core of ⁶⁸Ni and probe the strength of the N = 40 shell gap. We report the first observation of low-lying particle-hole excitations across the N = 40 subshell in ⁶⁹Ni and ⁶⁹Cu populated by Gamow-Teller decay. The selective nature of Gamow-Teller decay is used as a spectroscopic tool for clearly identifying specific single-particle components to the wave functions of the states in ⁶⁹Ni and ⁶⁹Cu. Crucial to this experiment is the production of isotopically pure sources of ⁶⁹Co and ⁶⁹Ni obtained by using resonant laser ionization.

The nuclei in this study were produced in a protoninduced fission reaction of 238 U at the LISOL facility at the Louvain-la-Neuve cyclotron laboratory [13]. The resulting fission products were captured and neutralized in an Ar-filled gas cell, and the Co or Ni isotopes were subsequently selectively ionized in a two-resonant-step laser excitation. The ions were extracted from the gas cell and guided to the LISOL mass separator with a sextupole ion guide. The products were then selected by their A/q ratio and transported to the detection point. The resulting β -delayed γ rays were collected in γ - γ and β - γ coincidences using the setup described in Ref. [14].

Representative β -gated γ spectra illustrating the identification of Co and Ni decays in the A = 69 mass chain are shown in Fig. 1. These spectra were obtained with lasers set on Co resonance [Fig. 1(a)], Ni resonance [Fig. 1(b)], and lasers off [Fig. 1(c)]. From the comparison of the three spectra one can immediately identify γ rays associated with a particular nucleus. The strongest γ ray in the ⁶⁹Co decay is the 594-keV and out of its time behavior [see Fig. 1(a) inset] a half-life of 0.22(2) s is determined. This is in agreement with the previously measured halflife of 0.27(5) s [15]. On the basis of the laser selectivity as well as coincidence relationships and half-life behavior, additional γ rays with energies [and intensities relative to the 594-keV transition $(I_{\gamma} \equiv 100)$] of 303.6 [5.1(7)], 602.4 [15.6(17)], 1128.4 [14.6(19)], 1196.5 [19.7(22)], 1319.5 [16.2(21)], 1342.8 [4.8(11)], 1545.2 [4.8(12)], 1580.6 [4.1(11)], 1641.7 [4.1(12)], 1824.0 [1.6(5)], and 2879.8 keV [6.5(18)] are also assigned to the ⁶⁹Co decay.

Another line of particular interest is at 1298 keV. This γ ray is clearly observed in the β -gated Co-resonance spectrum; however, unlike other Co lines, it is also observed in the Ni-resonance spectrum. This provides clear evidence that the 1298-keV line is a γ ray associated with ⁶⁹Ni decay, the daughter of ⁶⁹Co. The half-life of the 1298-keV line in ⁶⁹Ni, determined from the weighted average of both

FIG. 1. β -gated γ -ray spectra for mass 69 when (a) lasers are tuned to Co resonance, (b) Ni resonance, and (c) switched off. Asterisks label the energies identified as resulting from ⁶⁹Co decay, triangles from ⁶⁹Ni decay, circles from ⁶⁹Cu decay, and squares as nonresonant background lines. The 594-keV and 1298-keV lines are indicated by their energy, and discussed in the text. The insets in (a) and (b) are the time decay spectra from gates on the 594-keV and 1298-keV γ rays, respectively, with representative exponential fits to the data.

the Co-resonance and Ni-resonance experiments, is measured to be 3.5(5) s [Fig. 1(b) inset]. The 1298-keV line has also been observed by Prisciandaro *et al.* [16] from fragmentation of a ⁷⁶Ge beam, and their half-life measurement is in agreement with ours.

The fact that the 1298-keV transition appears in both Figs. 1(a) and 1(b) with a 3.5(5) s half-life implies that the β decay to the level deexcited by this γ line does not come from the ⁶⁹Ni ground state, which has a measured half-life of 11.2(9) s [9,17], but results from the decay of an isomer. The location of this isomer has been previously reported by Grzywacz *et al.* [6]. In their paper they reported a 594-keV γ decay to a level at 321(2) keV above the ground state in ⁶⁹Ni. No γ decay was observed decaying out of this level, thus they suggested that this level was isomeric with an estimated half-life of 3 s.

The partial level scheme showing the ${}^{69}\text{Co} \rightarrow {}^{69}\text{Ni} \rightarrow {}^{69}\text{Cu}$ decay chain is presented in Fig. 2. Included in the scheme of ${}^{69}\text{Ni}$ are levels that have been identified by Grzywacz *et al.* [6]. While the 594.3-keV transition is a commonly observed γ ray, all other transitions from the β decay are complementary to the isomer work [6]. Three γ rays in addition to the 594-keV transition can be placed unambiguously into the ${}^{69}\text{Co}$ decay scheme on the basis of coincidence relationships; however, it is not possible to rule out or confirm coincidence relationships

FIG. 2. The experimental decay scheme of 69 Co and 69 Ni, with comparative shell-model calculations for (a) 69 Ni and (b) 69 Cu. Theoretical levels that can be associated with experimental levels are indicated by solid levels and larger fonts. Details are provided in the text.

of the other γ -ray transitions. A total of 71(7)% of the γ -ray intensity could be placed in the level scheme and the β -decay branching ratios labeled in Fig. 2 for ⁶⁹Co are deduced assuming that all unplaced γ rays are not in coincidence and feed either the isomer or ground state. From the comparison of the intensity feeding into the 321-keV isomeric level in ⁶⁹Ni with γ rays observed from the ground-state decay of ⁶⁹Ni [17], it is possible to conclude that 30(4)% of the β decay of ⁶⁹Co proceeds to the $9/2^+$ ground state of ⁶⁹Ni either directly or through excited levels. The amount of ground-state to groundstate feeding can be inferred by comparison with the forbidden $7/2^- \rightarrow 9/2^+$ decay observed in ⁶⁷Co [11]. Assuming the same $\log ft$ for the ⁶⁹Co decay to the ⁶⁹Ni ground state (i.e., 6.3) the β -branching ratio would be $\approx 2\%$; however, it is likely that this β feeding would be somewhat larger due to the increased occupation of the $g_{9/2}$ orbital [11]. Still most of the unplaced γ -ray intensity can feed the ground state of ⁶⁹Ni.

Included in the inset of Fig. 2(a) are results from a shell-model calculation using the interaction presented in Ref. [18] with modified single-particle energies [19]. These calculated levels are organized on the basis of their leading configurations in the wave function, and those which can be positively associated with an experimental level are indicated with a dashed line to that state.

With regard to the decay of ⁶⁹Ni, the ground-state decay was originally studied by Bosch *et al.* [17] and later by Jokinen *et al.* [20]. This decay scheme is confirmed in our study. From both studies [17,20], the decay of the low-spin isomer of ⁶⁹Ni was not observed which is likely due to the specific reactions used and the characteristics of their respective ion sources. In addition, earlier work from $(d, {}^{3}\text{He})$ transfer studies establishes many lowenergy levels in ⁶⁹Cu [21]. For clarity, we show only the first few excited states in ⁶⁹Cu in Fig. 2. Presented in Fig. 2(b) are the calculated low-lying states in ⁶⁹Cu using the same interaction discussed above in both the proton and neutron subspaces.

No additional γ rays were observed with a 3.5 s half-life or in coincidence with the 1298.0-keV line. In particular, no γ ray from the 1110-keV level reported by Zeidman and Nolan [21] could be observed, thus leading to an upper limit of 3% β -decay feeding from the (1/2⁻) isomer in ⁶⁹Ni. The ground-state feeding can be determined by comparing the γ -ray intensity feeding into the 321-keV level in ⁶⁹Ni to the intensity of the 1298.0-keV γ line. From this comparison, one can conclude that 26(9)% of the ⁶⁹Ni isomer decay feeds the ⁶⁹Cu ground state; however, this value may increase if there is additional intensity feeding the ⁶⁹Ni isomer. This possibility of missed intensity has been taken into account in the uncertainty of the deduced log*ft* values, which are 4.3(2) and 5.3(2) for the excited and ground-state decays, respectively.

The positive parity levels observed and calculated in $^{69}Ni_{41}$ (see Fig. 2) can be interpreted as arising from

the coupling of a single $g_{9/2}$ neutron to excitations of the ⁶⁸Ni core, whereas the negative-parity levels can be viewed as 2p-1h states arising from coupling a $p_{1/2}$ or $f_{5/2}$ hole to the core of ⁷⁰₂₈Ni₄₂ which has two $g_{9/2}$ neutrons beyond ⁶⁸Ni. A similar interpretation has been presented by Brown *et al.* for the odd-proton structure in ⁹¹₄₁Nb₅₀ [22].

The unique features of the decay sequence arise from the structure of ${}^{69}_{27}$ Co₄₂ which consists of a single $f_{7/2}$ proton hole coupled to two $g_{9/2}$ neutrons beyond the N =40 subshell closure. While forbidden decay is possible (as stated earlier) the major decay path is the Gamow-Teller decay of an $f_{5/2}$ core neutron to fill the last $f_{7/2}$ proton orbital leaving behind one-neutron hole $(f_{5/2})$ and two-neutron $(g_{9/2}^2)$ structures. Hence, it is possible to assign the level we observe most strongly in β decay at 915 keV as the 2*p*-1*h* state ($\nu f_{5/2}^{-1} \otimes {}^{70}$ Ni). The level at 1518 keV can be identified as a $5/2^{-1}$ level whose principal configuration is the $p_{1/2}$ hole coupled to the 2^+ core excitation of ⁷⁰Ni; however, the low $\log ft$ value of 5.0(5) for this level suggests that the two observed $5/2^{-1}$ levels are strongly mixed. The level at 1821 keV is likely the $7/2^{-}$ state originating from the coupling of an $f_{5/2}$ hole to the 2^+ state in ⁷⁰Ni. Thus all the negative parity states in ⁶⁹Ni can be interpreted as the coupling of a hole to a ⁷⁰Ni core.

The core polarization, which depends on the mixing of the neutron $(p_{1/2})_{0^+}^2$ and $(g_{9/2})_{0^+}^2$ content in the wave functions, is conclusively seen from the results observed in the $1/2^{-}$ isomer decay of ⁶⁹Ni. The decay of the 2p-1hstate can proceed either by forbidden decay of one of the $g_{9/2}$ neutrons or by Gamow-Teller decay of the $p_{1/2}$ particle to the empty $p_{3/2}$ proton orbital in ${}^{69}_{29}$ Cu₄₀ leaving behind the two $g_{9/2}$ neutron particles and a completely vacant $p_{1/2}$ orbital. It is the latter path that is uniquely observed in this decay sequence leading to population of a newly identified $3/2^{-}$ level at 1298 keV that can be viewed as the $p_{3/2}$ proton coupled to the 2p-2h state at 1770 keV in ⁶⁸Ni. This level is quite comparable to the $5/2^+$ level at 1466 keV in ${}^{91}_{40}$ Zr₅₁ [23] which can be viewed as a $d_{5/2}$ neutron coupled to the 2p-2h state at 1761 keV in ⁹⁰Zr. It should be noted that while this state has been observed, its unique character has not been specifically identified or discussed. For the 1298-keV level in ⁶⁹Cu, the selectivity of the Gamow-Teller decay leaves little doubt about its configuration. This selectivity is further illustrated by the nonobservation of feeding of the $p_{1/2}$ state identified from particle-transfer reactions at 1110 keV [21] which sets a limiting $\log ft$ to this state of >5.8.

Compared to the $2p \cdot 2h$ state in ⁶⁸Ni a 472-keV downward shift of the $3/2_2^-$ state in ⁶⁹Cu is observed which can be attributed to the proton-neutron interaction. To estimate the shift we have applied the effective shell model (ESM) approach, which neglects configuration mixing [24]. Using ⁶⁶Ni as an effective core, relative single-particle energies (SPE) and two-body matrix elements (TBME) were determined from excitation energies. SPE were taken from ⁶⁷Cu, ⁶⁷Ni, and TBME from ^{68,70}Cu ($[\pi p_{3/2}\nu p_{1/2}]_{1,2}, [\pi p_{3/2}\nu g_{9/2}]_{3-6}$) and ^{68,70}Ni ($[\nu p_{1/2}]_0^2, [\nu g_{9/2}]_{0,2}^2$), which results in a shift of 540 keV. The corresponding shift for the $5/2_2^+$ state in ⁹¹Zr is only 295 keV, which is to be compared to 340 keV calculated in the ESM using input data from ^{88,89}Sr, ^{89,90}Y, and ⁹⁰Zr, respectively. The larger shift in ⁶⁹Cu implies that the ⁶⁸Ni core is more easily polarized. The theoretical overestimation in the shift indicates configuration mixing, which is neglected in the ESM.

It is also possible to deduce the mixing of the $\pi p_{3/2}^{+1} \nu p_{1/2}^{-2} \nu g_{9/2}^{+2}$ configuration into the $\pi p_{3/2}^{+1}$ ground state of ⁶⁹Cu. The factor of 10 difference in the *ft* values for Gamow-Teller population of the ground and 1298-keV levels in ⁶⁹Cu can be used to determine that there is a 9(4)% mixture of these states. From the shell-model calculations presented in Fig. 2 the mixing of the $\pi p_{3/2}^{+1} \nu p_{1/2}^{-2} \nu g_{9/2}^{+2}$ configuration into the ground state is predicted to be 6% which is in good agreement with the observed mixing. For comparison, the L = 2 strength for the population of the 1466-keV 5/2⁺ level in ⁹¹Zr is ~2% of the population of the ground state [23].

In summary, the β -delayed γ decay of ⁶⁹Co was measured for the first time. The Gamow-Teller decay of the $\pi f_{7/2}^{-1} \nu g_{9/2}^{+2} {}^{69}$ Co ground state is observed to populate neutron 2p-1h states in ⁶⁹Ni that subsequently feed a $1/2^{-1}$ isomer at 321 keV which can be interpreted as the $\nu p_{1/2}^{-1} \nu g_{9/2}^{+2}$ configuration. From the deduced $\log ft$ values, it can be seen that the wave functions of the observed $5/2^{-1}$ states are heavily mixed. From the comparison of the calculated ⁶⁹Ni scheme to the experimental levels, it is possible to interpret all negative parity levels as couplings of single-hole states to the core of ⁷⁰Ni.

The decay of the $1/2^{-1}$ isomer in ⁶⁹Ni is observed to strongly populate a level at 1298 keV while only relatively weakly feeding the ⁶⁹Cu ground state. This is an illustration of the selectivity of the Gamow-Teller decay where the $\nu p_{1/2} \rightarrow \pi p_{3/2}$ conversion necessitates that the "spectator" $\nu g_{9/2}$ pair remains. The 1298-keV level in ⁶⁹Cu is interpreted as a $p_{3/2}$ proton particle coupled to the neutron 2p-2h excitation. Direct β feeding to the ground state is the result of a 9(4)% mixing of the $\pi p_{3/2}^{+1} \nu p_{1/2}^{-2} \nu g_{9/2}^{+2}$ configuration into the wave function which is larger than the ~2% mixing observed in ⁹¹Zr. Thus, while ⁶⁸Ni has features consistent with other doubly magic nuclei, the N = 40 subshell closure is even weaker than the corresponding Z = 40 gap, and its stabilizing effect disappears already with the coupling of a single nucleon.

We gratefully thank J. Gentens and P. Van den Bergh for running the LISOL separator. This work is supported by the Inter-University Attraction Poles (IUAP) Research Program, the Fund for Scientific Research-Flanders (FWO-Belgium), and the Research Fund K. U. Leuven (GOA).

- [1] M. Bernas et al., J. Phys. (Paris), Lett. 45, L851 (1984).
- [2] M. Girod et al., Phys. Rev. C 37, 2600 (1988).
- [3] R. Broda et al., Phys. Rev. Lett. 74, 868 (1995).
- [4] Ch. Engelmann et al., Z. Phys. A 352, 351 (1995).
- [5] F. Ameil et al., Eur. Phys. J. A 1, 275 (1998).
- [6] R. Grzywacz et al., Phys. Rev. Lett. 81, 766 (1998).
- [7] F. Azaiez, in *Proceedings of Nuclear Structure '98, Gatlinburg, TN, 1998*, edited by C. Baktash (AIP, Woodbury, NY, 1999).
- [8] M. Huhta et al., Phys. Rev. C 58, 3187 (1998).
- [9] S. Franchoo *et al.*, Phys. Rev. Lett. **81**, 3100 (1998).
- [10] M. Hannawald et al., Phys. Rev. Lett. 82, 1391 (1999).
- [11] L. Weissman et al., Phys. Rev. C 59, 2004 (1999).
- [12] W.F. Mueller *et al.*, in *Proceedings of Nuclear Structure* '98 (Ref. [7]).
- [13] Y. Kudryavtsev *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. B **114**, 350 (1996).
- [14] L. Weissman *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A **423**, 328 (1999).
- [15] M. Bernas et al., Phys. Rev. Lett. 67, 3661 (1991).
- [16] J.I. Prisciandaro et al., Phys. Rev. C 60, 054307 (1999).
- [17] U. Bosch et al., Nucl. Phys. A477, 89 (1988).
- [18] J. Sinatkas *et al.*, J. Phys. G **18**, 1377 (1992); **18**, 1401 (1992).
- [19] H. Grawe et al., in Proceedings of The Beta-Decay, from Weak Interaction to Nuclear Structure, Strasbourg, France, 1999, edited by Ch. Miehe (IRES, Strasbourg, 1999).
- [20] A. Jokinen *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. B **126**, 95 (1997).
- [21] B. Zeidman and J.A. Nolan, Phys. Rev. C 18, 2122 (1978).
- [22] B.A. Brown et al., Phys. Rev. C 13, 1900 (1976).
- [23] A. Graue et al., Nucl. Phys. A187, 141 (1972).
- [24] J. Blomqvist, in Proceedings of the Argonne Symposium on High Spin Phenomena, Argonne, IL, 1979 (Argonne Report No. ANL-PHY-79-4, 1979), p. 155.