Gaudefroy et al. Reply: Reference [1] aimed, in particular, at determining the variation of the neutron $p_{3 / 2}-p_{1 / 2}$ spin-orbit splitting ($\Delta \mathrm{SO}$) between ${ }_{20}^{49} \mathrm{Ca}$ and ${ }_{18}^{47} \mathrm{Ar}$ due to the removal of 2 protons. This was achieved by using the experimental energy difference between the $3 / 2_{1}^{-}$and $1 / 2_{1}^{-}$states in the two nuclei. However, as soon as one departs from a doubly magic nucleus the single-particle strength of the $p_{3 / 2}$ and $p_{1 / 2}$ states becomes fragmented as they couple to excitations of the core nucleus. Therefore, Signoracci and Brown [2] pointed out that the prescription of Baranger [3] should be used to determine the singleparticle centroid energy by including both the particle and hole strengths for the $p_{3 / 2}$ and $p_{1 / 2}$ states. In practice, the full strength is rarely obtained experimentally and the observed states carry a various fraction of it. In ${ }^{49} \mathrm{Ca}_{29}$, $85(12) \%$ and $91(15) \%$ of the single-particle strengths of the $p_{3 / 2}$ and $p_{1 / 2}$ states are contained in the first $3 / 2^{-}$and $1 / 2^{-}$states, respectively. In ${ }^{47} \mathrm{Ar}_{29}$, these strengths are reduced to $61(5) \%$ and $81(6) \%$, respectively. Therefore the determination of $\Delta \mathrm{SO}$ requires an adjustment of the proton-neutron monopole matrix elements V^{pn} involving the p orbits to reproduce experimental data, after having included the proper nuclear correlations.

Shell model calculations using the $s d f p$ interaction by Nummela et al. [4] exhibit deviations of binding energies of up to 400 keV for the $3 / 2^{-}$and $1 / 2^{-}$states in the ${ }^{45,46,47} \mathrm{Ar}$ and ${ }^{47,48,49} \mathrm{Ca}$ nuclei. Therefore, contrary to Ref. [2], we have modified the relevant neutron-proton monopole interactions V^{pn} to reproduce the experimental binding energies and spectroscopic factors of the known p states in ${ }^{45,47} \mathrm{Ar}$ [1,5] and ${ }^{47,49} \mathrm{Ca}$ [6]. By this means, the particle strengths of the $\nu p_{3 / 2}$ and $\nu p_{1 / 2}$ orbits, $\sum C^{2} S^{+}$ (using the notation of [2]), agree with the results of the ${ }^{46} \mathrm{Ar}(d, p){ }^{47} \mathrm{Ar}$ reaction [1]. Similarly the hole strength of the $\nu p_{3 / 2}$ orbital, $\sum C^{2} S^{-}$, is in accordance with the result of the 1-neutron knock-out reaction ${ }^{46} \mathrm{Ar}(-1 \mathrm{n})^{45} \mathrm{Ar}$ [7]. These features show that the shell model account well for the splitting of the single-particle strength due to correlations. Proton correlations are essentially due to the quasidegeneracy between the $s_{1 / 2}$ and $d_{3 / 2}$ orbits. The vacancy numbers $[(2 j+1)-$ occupation number] of the proton $s_{1 / 2}, d_{3 / 2}$, and $d_{5 / 2}$ orbits in the ground state of ${ }^{46} \mathrm{Ar}$ are $0.83,1.05$ and 0.12 , respectively. In ${ }^{48} \mathrm{Ca}$ all $s d$ orbits are fully occupied and vacancy values are null. The resulting ground-state wave function (WF) of ${ }^{46} \mathrm{Ar}$ contain equal mixing of $\left(\pi s_{1 / 2}\right)^{2}\left(\pi d_{3 / 2}\right)^{2}$ and $\left(\pi s_{1 / 2}\right)^{0}\left(\pi d_{3 / 2}\right)^{4}$ configurations. Neutron correlations are due to particle hole ($p-$ h) excitations across the $N=28$ shell gap. About 50% of the ground-state WF of ${ }^{46} \mathrm{Ar}$ correspond to $0 p-0 h$ (or $f_{7 / 2}^{8}$) neutron closed-shell configuration. The $1 p-1 h$ and $2 p-2 h$ excitations correspond each to 20% of the WF. Higher order excitations provide the remaining strength. The $3 / 2_{1}^{-}$state observed in ${ }^{47} \mathrm{Ar}$ exhibits about 55% of $1 p-0 h$ neutron configuration. The $2 p-1 h(3 p-2 h)$ neutron component represents $25 \%(15 \%)$ of the WF. In
${ }^{45} \mathrm{Ar}$, the $3 / 2_{1}^{-}$state has $30 \%, 40 \%$, and 20% of $0 p-1 h$, $1 p-2 h$, and $2 p-3 h$ neutron excitations, respectively. For both nuclei, correlations in the $3 / 2_{1}^{-}$state mainly correspond to the coupling of the proton 2^{+}excitation to neutrons in the $p_{3 / 2}$ or $f_{7 / 2}$ orbits.

According to the vacancy values determined in the $s d$ orbits, this leads to

$$
\begin{align*}
\Delta \mathrm{SO}= & 1.05\left(V_{d_{3 / 2} p_{3 / 2}}^{\mathrm{pn}}-V_{d_{3 / 2} p_{1 / 2}}^{\mathrm{pn}}\right) \\
& +0.83\left(V_{s_{1 / 2} p_{3 / 2}}^{\mathrm{pn}}-V_{s_{1 / 2} p_{1 / 2}}^{\mathrm{pn}}\right) \\
& +0.12\left(V_{d_{5 / 2} p_{3 / 2}}^{\mathrm{pn}}-V_{d_{5 / 2} p_{1 / 2}}^{\mathrm{pn}}\right) . \tag{1}
\end{align*}
$$

From the new effective interaction depicted above, one obtains $\left(V_{s_{1 / 2} p_{3 / 2}}^{\mathrm{pn}}-V_{s_{1 / 2} p_{3 / 2}}^{\mathrm{pn}}\right)=-0.25 \mathrm{MeV}$. Additional constraint to the monopole values is provided by the fact that the $p \mathrm{SO}$ splitting remains constant $(\simeq 1.7 \mathrm{MeV})$ between ${ }_{20}^{41} \mathrm{Ca}_{21}$ [8] and ${ }^{1637} \mathrm{~S}_{21}$ [9] after the removal of four protons from the $d_{3 / 2}$ orbit. This implies that $\left(V_{d_{3 / 2} p_{3 / 2}}^{\mathrm{pn}}-V_{d_{3 / 2} p_{1 / 2}}^{\mathrm{pn}}\right)=0$. The effect of the proton-neutron monopoles involving the $\pi d_{5 / 2}$ orbit on $\Delta \mathrm{SO}$ is less than 20 keV .

By using these monopole differences in Eq. (1), a reduction of $\Delta \mathrm{SO}$ by 207 keV is found. Identical reduction is obtained when using the prescription of Baranger [3] for the full p strengths, which is determined with the Lanczos strength function method [10]. When using the interaction of Ref. [4], which underestimated the energy spacing between the first $3 / 2_{1}^{-}$and $1 / 2_{1}^{-}$in ${ }^{49} \mathrm{Ca}$, an increase of the SO splitting by 145 keV is obtained.

The present reduction of the neutron p SO splitting between ${ }^{49} \mathrm{Ca}$ and ${ }^{47} \mathrm{Ar}$ by 207 keV is weaker than the value reported in Ref. [1], which has neglected significant correlations. As this reduction is mainly due to the 0.83 protons removed from the $s_{1 / 2}$ orbit, a decrease by 500 keV ($\simeq 30 \%$) of the p SO splitting is anticipated in the ${ }^{35} \mathrm{Si}$ or ${ }^{42} \mathrm{Si}$ nuclei in which the $2 s_{1 / 2}$ orbit is likely to be unoccupied.
D. J. Millener and A.P. Zuker are acknowledged for fruitful discussions at various stages of this work.
L. Gaudefroy, ${ }^{1,2}$ O. Sorlin, ${ }^{2,1}$ D. Beaumel, ${ }^{1}$
Y. Blumenfeld, ${ }^{1}$ Z. Dombrádi, ${ }^{3}$ S. Fortier, ${ }^{1}$ S. Franchoo, ${ }^{1}$ M. Gélin, ${ }^{2}$ J. Gibelin, ${ }^{1}$ S. Grévy, ${ }^{2}$ F. Hammache, ${ }^{1}$
F. Ibrahim, ${ }^{1}$ K. W. Kemper, ${ }^{4}$ K.-L. Kratz, ${ }^{5,6}$
S. M. Lukyanov, ${ }^{7}$ C. Monrozeau, ${ }^{1}$ L. Nalpas, ${ }^{8}$ F. Nowacki, ${ }^{9}$
A. N. Ostrowski, ${ }^{5,6}$ T. Otsuka, ${ }^{10}$ Yu.-E. Penionzhkevich, ${ }^{7}$
J. Piekarewicz, ${ }^{4}$ E. C. Pollacco, ${ }^{8}$ P. Roussel-Chomaz, ${ }^{2}$
E. Rich, ${ }^{1}$ J. A. Scarpaci, ${ }^{1}$ M. G. St. Laurent, ${ }^{2}$ D. Sohler, ${ }^{11}$ M. Stanoiu, ${ }^{12}$ T. Suzuki, ${ }^{13}$ E. Tryggestad, ${ }^{1}$ and D. Verney ${ }^{1}$
${ }^{1}$ 1IPN, IN2P3-CNRS
F- 91406 Orsay Cedex, France
${ }^{2}$ GANIL
BP 55027, F-14076 Caen Cedex 5, France
${ }^{3}$ Institute of Nuclear Research, H-4001 Debrecen, Pf. 51, Hungary
${ }^{4}$ Department of Physics
Florida State University
Tallahassee, Florida 32306, USA
${ }^{5}$ Institut für Kernchemie
Universität Mainz
D-55128 Mainz, Germany
${ }^{6} \mathrm{HGF}$ Virtual Institute for Nuclear Structure and Astrophyics (VISTARS)
D-55128 Mainz, Germany
${ }^{7}$ FLNR/JINR
141980 Dubna, Moscow Region, Russia
${ }^{8}$ CEA-Saclay, DAPNIA-SPhN
F-91191 Gif sur Yvette Cedex, France
${ }^{9}$ IReS, Université Louis Pasteur
BP 28, F-67037 Strasbourg Cedex, France
${ }^{10}$ Department of Physics
University of Tokyo
Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
${ }^{11}$ Institute of Nuclear Research
H-4001 Debrecen, POB 51, Hungary
${ }^{12}$ GSI, D-64291
Darmstadt, Germany
${ }^{13}$ Department of Physics Nihon University
Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
Received 23 January 2007; revised manuscript received
27 July 2007; published 31 August 2007
DOI: 10.1103/PhysRevLett.99.099202
PACS numbers: 25.45.Hi, 21.10.Jx, 21.10.Pc, 27.40.+z
[1] L. Gaudefroy et al., Phys. Rev. Lett. 97, 092501 (2006).
[2] A. Signoracci and B. A. Brown, preceding Comment, Phys. Rev. Lett. 99, 099201 (2007).
[3] M. Baranger, Nucl. Phys. A149, 225 (1970).
[4] S. Nummela et al., Phys. Rev. C 63, 044316 (2001).
[5] L. Gaudefroy et al., J. Phys. G 31, S1623 (2005).
[6] T. W. Burrows, Nuclear Data Sheets 76, 191 (1995).
[7] A. Gade et al., Phys. Rev. C 71, 051301(R) (2005).
[8] Y. Uozumi et al., Phys. Rev. C 50, 263 (1994).
[9] C. E. Thorn et al., Phys. Rev. C 30, 1442 (1984).
[10] E. Caurier et al., Rev. Mod. Phys. 77, 427 (2005).

