
Gaudefroy et al. Reply: Reference [1] aimed, in particu-
lar, at determining the variation of the neutron p3=2 � p1=2

spin-orbit splitting (�SO) between 49
20Ca and 47

18Ar due to
the removal of 2 protons. This was achieved by using the
experimental energy difference between the 3=2�1 and
1=2�1 states in the two nuclei. However, as soon as one
departs from a doubly magic nucleus the single-particle
strength of the p3=2 and p1=2 states becomes fragmented as
they couple to excitations of the core nucleus. Therefore,
Signoracci and Brown [2] pointed out that the prescription
of Baranger [3] should be used to determine the single-
particle centroid energy by including both the particle and
hole strengths for the p3=2 and p1=2 states. In practice, the
full strength is rarely obtained experimentally and the
observed states carry a various fraction of it. In 49Ca29,
85(12)% and 91(15)% of the single-particle strengths of
the p3=2 and p1=2 states are contained in the first 3=2� and
1=2� states, respectively. In 47Ar29, these strengths are
reduced to 61(5)% and 81(6)%, respectively. Therefore
the determination of �SO requires an adjustment of the
proton-neutron monopole matrix elements Vpn involving
the p orbits to reproduce experimental data, after having
included the proper nuclear correlations.

Shell model calculations using the sdfp interaction by
Nummela et al. [4] exhibit deviations of binding energies
of up to 400 keV for the 3=2� and 1=2� states in the
45;46;47Ar and 47;48;49Ca nuclei. Therefore, contrary to
Ref. [2], we have modified the relevant neutron-proton
monopole interactions Vpn to reproduce the experimental
binding energies and spectroscopic factors of the known p
states in 45;47Ar [1,5] and 47;49Ca [6]. By this means, the
particle strengths of the �p3=2 and �p1=2 orbits,

P
C2S�

(using the notation of [2]), agree with the results of the
46Ar�d; p�47Ar reaction [1]. Similarly the hole strength of
the �p3=2 orbital,

P
C2S�, is in accordance with the result

of the 1-neutron knock-out reaction 46Ar��1 n�45Ar [7].
These features show that the shell model account well for
the splitting of the single-particle strength due to correla-
tions. Proton correlations are essentially due to the quasi-
degeneracy between the s1=2 and d3=2 orbits. The vacancy
numbers [�2j� 1� � occupation number] of the proton
s1=2, d3=2, and d5=2 orbits in the ground state of 46Ar are
0.83, 1.05 and 0.12, respectively. In 48Ca all sd orbits are
fully occupied and vacancy values are null. The resulting
ground-state wave function (WF) of 46Ar contain equal
mixing of ��s1=2�

2��d3=2�
2 and ��s1=2�

0��d3=2�
4 configu-

rations. Neutron correlations are due to particle hole (p�
h) excitations across the N � 28 shell gap. About 50% of
the ground-state WF of 46Ar correspond to 0p� 0h (or
f8

7=2) neutron closed-shell configuration. The 1p� 1h and
2p� 2h excitations correspond each to 20% of the WF.
Higher order excitations provide the remaining strength.
The 3=2�1 state observed in 47Ar exhibits about 55% of
1p� 0h neutron configuration. The 2p� 1h (3p� 2h)
neutron component represents 25% (15%) of the WF. In

45Ar, the 3=2�1 state has 30%, 40%, and 20% of 0p� 1h,
1p� 2h, and 2p� 3h neutron excitations, respectively.
For both nuclei, correlations in the 3=2�1 state mainly
correspond to the coupling of the proton 2� excitation to
neutrons in the p3=2 or f7=2 orbits.

According to the vacancy values determined in the sd
orbits, this leads to
 

�SO � 1:05�Vpn
d3=2p3=2

� Vpn
d3=2p1=2

�

� 0:83�Vpn
s1=2p3=2

� Vpn
s1=2p1=2

�

� 0:12�Vpn
d5=2p3=2

� Vpn
d5=2p1=2

�: (1)

From the new effective interaction depicted above, one
obtains �Vpn

s1=2p3=2
� Vpn

s1=2p3=2
� � �0:25 MeV. Additional

constraint to the monopole values is provided by the fact
that the p SO splitting remains constant ( ’ 1:7 MeV)
between 41

20Ca21 [8] and 1637S21 [9] after the removal of
four protons from the d3=2 orbit. This implies that
�Vpn

d3=2p3=2
� Vpn

d3=2p1=2
� � 0. The effect of the proton-neutron

monopoles involving the �d5=2 orbit on �SO is less than
20 keV.

By using these monopole differences in Eq. (1), a re-
duction of �SO by 207 keV is found. Identical reduction is
obtained when using the prescription of Baranger [3] for
the full p strengths, which is determined with the Lanczos
strength function method [10]. When using the interaction
of Ref. [4], which underestimated the energy spacing
between the first 3=2�1 and 1=2�1 in 49Ca, an increase of
the SO splitting by 145 keV is obtained.

The present reduction of the neutron p SO splitting
between 49Ca and 47Ar by 207 keV is weaker than the
value reported in Ref. [1], which has neglected significant
correlations. As this reduction is mainly due to the 0.83
protons removed from the s1=2 orbit, a decrease by 500 keV
( ’ 30%) of the p SO splitting is anticipated in the 35Si or
42Si nuclei in which the 2s1=2 orbit is likely to be
unoccupied.
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