Gaudefroy et al. Reply: Reference [1] aimed, in particular, at determining the variation of the neutron $p_{3/2} - p_{1/2}$ spin-orbit splitting (Δ SO) between $^{49}_{20}$ Ca and $^{47}_{18}$ Ar due to the removal of 2 protons. This was achieved by using the experimental energy difference between the $3/2_1^-$ and $1/2_1^-$ states in the two nuclei. However, as soon as one departs from a doubly magic nucleus the single-particle strength of the $p_{3/2}$ and $p_{1/2}$ states becomes fragmented as they couple to excitations of the core nucleus. Therefore, Signoracci and Brown [2] pointed out that the prescription of Baranger [3] should be used to determine the singleparticle centroid energy by including both the particle and hole strengths for the $p_{3/2}$ and $p_{1/2}$ states. In practice, the full strength is rarely obtained experimentally and the observed states carry a various fraction of it. In ${}^{49}Ca_{29}$, 85(12)% and 91(15)% of the single-particle strengths of the $p_{3/2}$ and $p_{1/2}$ states are contained in the first $3/2^-$ and $1/2^{-}$ states, respectively. In ${}^{47}Ar_{29}$, these strengths are reduced to 61(5)% and 81(6)%, respectively. Therefore the determination of ΔSO requires an adjustment of the proton-neutron monopole matrix elements V^{pn} involving the p orbits to reproduce experimental data, after having included the proper nuclear correlations.

Shell model calculations using the *sdfp* interaction by Nummela et al. [4] exhibit deviations of binding energies of up to 400 keV for the $3/2^-$ and $1/2^-$ states in the ^{45,46,47}Ar and ^{47,48,49}Ca nuclei. Therefore, contrary to Ref. [2], we have modified the relevant neutron-proton monopole interactions V^{pn} to reproduce the experimental binding energies and spectroscopic factors of the known pstates in ^{45,47}Ar [1,5] and ^{47,49}Ca [6]. By this means, the particle strengths of the $\nu p_{3/2}$ and $\nu p_{1/2}$ orbits, $\sum C^2 S^+$ (using the notation of [2]), agree with the results of the ${}^{46}\text{Ar}(d, p){}^{47}\text{Ar}$ reaction [1]. Similarly the hole strength of the $\nu p_{3/2}$ orbital, $\sum C^2 S^-$, is in accordance with the result of the 1-neutron knock-out reaction ${}^{46}\text{Ar}(-1 \text{ n}){}^{45}\text{Ar}$ [7]. These features show that the shell model account well for the splitting of the single-particle strength due to correlations. Proton correlations are essentially due to the quasidegeneracy between the $s_{1/2}$ and $d_{3/2}$ orbits. The vacancy numbers [(2j + 1) - occupation number] of the proton $s_{1/2}$, $d_{3/2}$, and $d_{5/2}$ orbits in the ground state of ⁴⁶Ar are 0.83, 1.05 and 0.12, respectively. In 48 Ca all sd orbits are fully occupied and vacancy values are null. The resulting ground-state wave function (WF) of ⁴⁶Ar contain equal mixing of $(\pi s_{1/2})^2 (\pi d_{3/2})^2$ and $(\pi s_{1/2})^0 (\pi d_{3/2})^4$ configurations. Neutron correlations are due to particle hole (p - p)h) excitations across the N = 28 shell gap. About 50% of the ground-state WF of 46 Ar correspond to 0p - 0h (or $f_{7/2}^{8}$) neutron closed-shell configuration. The 1p - 1h and 2p - 2h excitations correspond each to 20% of the WF. Higher order excitations provide the remaining strength. The $3/2_1^-$ state observed in ⁴⁷Ar exhibits about 55% of 1p - 0h neutron configuration. The 2p - 1h (3p - 2h)neutron component represents 25% (15%) of the WF. In

⁴⁵Ar, the $3/2_1^-$ state has 30%, 40%, and 20% of 0p - 1h, 1p - 2h, and 2p - 3h neutron excitations, respectively. For both nuclei, correlations in the $3/2_1^-$ state mainly correspond to the coupling of the proton 2^+ excitation to neutrons in the $p_{3/2}$ or $f_{7/2}$ orbits.

According to the vacancy values determined in the sd orbits, this leads to

$$\Delta SO = 1.05(V_{d_{3/2}p_{3/2}}^{pn} - V_{d_{3/2}p_{1/2}}^{pn}) + 0.83(V_{s_{1/2}p_{3/2}}^{pn} - V_{s_{1/2}p_{1/2}}^{pn}) + 0.12(V_{d_{5/2}p_{3/2}}^{pn} - V_{d_{5/2}p_{1/2}}^{pn}).$$
(1)

From the new effective interaction depicted above, one obtains $(V_{s_{1/2}p_{3/2}}^{pn} - V_{s_{1/2}p_{3/2}}^{pn}) = -0.25$ MeV. Additional constraint to the monopole values is provided by the fact that the p SO splitting remains constant ($\simeq 1.7$ MeV) between $\frac{^{41}}{^{20}}Ca_{21}$ [8] and $^{1637}S_{21}$ [9] after the removal of four protons from the $d_{3/2}$ orbit. This implies that $(V_{d_{3/2}P_{3/2}}^{\text{pn}} - V_{d_{3/2}P_{1/2}}^{\text{pn}}) = 0$. The effect of the proton-neutron monopoles involving the $\pi d_{5/2}$ orbit on Δ SO is less than 20 keV.

By using these monopole differences in Eq. (1), a reduction of Δ SO by 207 keV is found. Identical reduction is obtained when using the prescription of Baranger [3] for the full p strengths, which is determined with the Lanczos strength function method [10]. When using the interaction of Ref. [4], which underestimated the energy spacing between the first $3/2_1^-$ and $1/2_1^-$ in ⁴⁹Ca, an *increase* of the SO splitting by 145 keV is obtained.

The present reduction of the neutron p SO splitting between ⁴⁹Ca and ⁴⁷Ar by 207 keV is weaker than the value reported in Ref. [1], which has neglected significant correlations. As this reduction is mainly due to the 0.83 protons removed from the $s_{1/2}$ orbit, a decrease by 500 keV ($\simeq 30\%$) of the *p* SO splitting is anticipated in the ³⁵Si or ⁴²Si nuclei in which the $2s_{1/2}$ orbit is likely to be unoccupied.

D.J. Millener and A.P. Zuker are acknowledged for fruitful discussions at various stages of this work.

- L. Gaudefroy,^{1,2} O. Sorlin,^{2,1} D. Beaumel,¹
- Y. Blumenfeld,¹ Z. Dombrádi,³ S. Fortier,¹ S. Franchoo,¹
- M. Gélin,² J. Gibelin,¹ S. Grévy,² F. Hammache,¹
- F. Ibrahim,¹ K. W. Kemper,⁴ K.-L. Kratz,^{5,6}
- S. M. Lukyanov,⁷ C. Monrozeau,¹ L. Nalpas,⁸ F. Nowacki,⁹
- A. N. Ostrowski,^{5,6} T. Otsuka,¹⁰ Yu.-E. Penionzhkevich,⁷
- J. Piekarewicz,⁴ E. C. Pollacco,⁸ P. Roussel-Chomaz,²
- E. Rich,¹ J. A. Scarpaci,¹ M. G. St. Laurent,² D. Sohler,¹¹
- M. Stanoiu,¹² T. Suzuki,¹³ E. Tryggestad,¹ and D. Verney¹ ¹1IPN, IN2P3-CNRS F- 91406 Orsay Cedex, France
- ²GANIL
- BP 55027, F-14076 Caen Cedex 5, France
- ³Institute of Nuclear Research, H-4001 Debrecen, Pf. 51, Hungary

⁴Department of Physics Florida State University Tallahassee, Florida 32306, USA ⁵Institut für Kernchemie Universität Mainz D-55128 Mainz, Germany ⁶HGF Virtual Institute for Nuclear Structure and Astrophyics (VISTARS) D-55128 Mainz, Germany ⁷FLNR/JINR 141980 Dubna, Moscow Region, Russia ⁸CEA-Saclay, DAPNIA-SPhN F-91191 Gif sur Yvette Cedex, France ⁹IReS, Université Louis Pasteur BP 28, F-67037 Strasbourg Cedex, France ¹⁰Department of Physics University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan ¹¹Institute of Nuclear Research H-4001 Debrecen, POB 51, Hungary ¹²GSI, D-64291 Darmstadt, Germany

¹³Department of Physics Nihon University Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan

Received 23 January 2007; revised manuscript received 27 July 2007; published 31 August 2007 DOI: 10.1103/PhysRevLett.99.099202 PACS numbers: 25.45.Hi, 21.10.Jx, 21.10.Pc, 27.40.+z

- [1] L. Gaudefroy et al., Phys. Rev. Lett. 97, 092501 (2006).
- [2] A. Signoracci and B.A. Brown, preceding Comment, Phys. Rev. Lett. **99**, 099201 (2007).
- [3] M. Baranger, Nucl. Phys. A149, 225 (1970).
- [4] S. Nummela et al., Phys. Rev. C 63, 044316 (2001).
- [5] L. Gaudefroy *et al.*, J. Phys. G **31**, S1623 (2005).
- [6] T. W. Burrows, Nuclear Data Sheets 76, 191 (1995).
- [7] A. Gade et al., Phys. Rev. C 71, 051301(R) (2005).
- [8] Y. Uozumi et al., Phys. Rev. C 50, 263 (1994).
- [9] C.E. Thorn et al., Phys. Rev. C 30, 1442 (1984).
- [10] E. Caurier et al., Rev. Mod. Phys. 77, 427 (2005).