Nuclear spin and moments of ⁷³Kr and odd–even staggering in the radii of light krypton isotopes

W. Geithner¹, S. Franchoo², S. Kappertz¹, K. Marinova³, R. Neugart¹, and the ISOLDE Collaboration²

¹ Institut für Physik, Universität Mainz, D-55099 Mainz, Germany

² EP Division, CERN, CH-1211 Geneva 23, Switzerland

³ Faculty of Physics, University of Sofia, 1164 Sofia, Bulgaria

PACS. 27.50.+e $59 \le A \le 89 - 21.10$.Ky Electromagnetic moments - 21.10.Hw Spin, parity, and isobaric spin

Nuclear spectroscopy measurements in the region of neutron-deficient krypton isotopes have indicated that pronounced shape changes and instabilities occur when the nuclei approach the N = Z line. This is confirmed by isotope shift measurements on krypton [1] yielding an increasing inverted odd-even staggering of the radii [2] from ⁸²Kr (N = 46) to ⁷⁴Kr (N = 38). We have now completed the published data by measuring the hyperfine structure and isotope shift of ⁷³Kr. This is also interesting in context with a recent β -decay study [3]. The feeding of excited states in ⁷³Br gave strong arguments for the ground-state spin and parity of ⁷³Kr to be $3/2^-$, in contrast to the adopted assignment of $5/2^-$.

The experimental method is based on collinear fast beam laser spectroscopy in connection with highly efficient detection. State selective charge-exchange neutralization on caesium vapour populates efficiently the metastable $4p^5 5s[3/2]_2$ atomic state. The excitation by laser light at 760 nm optically pumps the atoms to the $4p^6$ ground state. This optical pumping is detected by selective ionization of the metastable atoms in collisions with chlorine molecules in a 10^{-3} mbar gas atmosphere. The ionized fraction of the beam is deflected onto a tape system equipped with scintillation counters for the detection of the β -decays of 73 Kr $(T_{1/2} = 26 \text{ s})$. In the same way, the neutral fraction of the beam is monitored for normalizing to non-statistical beam fluctuations.

The spectrum plotted in Fig. 1 together with the fitted hyperfine structure pattern is well resolved. The revised spin assignment of I = 3/2 is clearly confirmed by this measurement, and the magnetic dipole and electric quadrupole moments can be determined from the hyperfine structure. The preliminary analysis yields a magnetic moment of $\mu_I(^{73}\text{Kr}) = +0.912(7) \mu_N$. It remains to be explained how the positive sign is compatible with a negative-parity state of spin 3/2. The relatively small spectroscopic quadrupole moment, $Q_s = +0.63(8)$ b, corresponds to a large intrinsic moment with the strongcoupling projection factor for I = 3/2.

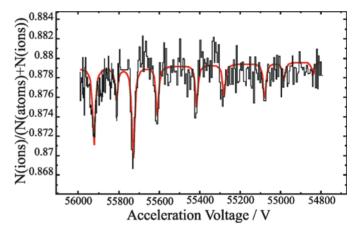


Fig. 1. Experimental hyperfine spectrum of 73 Kr. The ion count rate (N(ion)) is normalized to the total beam intensity N(ion) + N(atom).

In addition to the nuclear moments the isotope shift with respect to ⁸⁶Kr has been measured. The data show an exceptionally large mean square charge radius of ⁷³Kr compared to the even-A neighbours. The previously discussed odd–even staggering [2] increases further towards N = Z and indicates strong deformation for the ground state of ⁷³Kr.

Supported by BMBF (Germany), EU HRPI programme and Alexander von Humboldt-Stiftung.

References

- 1. M. Keim et al., Nucl. Phys. A 586, 219 (1995).
- 2. P. Lievens et al., Europhys. Lett. 33, 11 (1996).
- 3. Ch. Miehé et al., Eur. Phys. J. A 5, 143 (1999).