Perspectives for quarkonium physics in CMS M. Musich for the CMS Collaboration

Department of Experimental Physics, University of Torino/INFN, Torino, Italy

Abstract

We present Monte Carlo based studies which evaluate the perspectives of the CMS experiment for J/ ψ and Υ measurements with the first data at LHC during the 2010 data taking. Some results from the 2010 runs are also presented.

The CMS Experiment

The CMS Experiment [1] is one of the two general-purpose experiments at the proton-proton collider LHC at CERN.

- The CMS detector features:
- ► Large rapidity coverage (|η| < 2.4)
 ► Excellent µ momentum resolution:
 - matching between μ -chambers and the

Muon reconstruction and handling of low p_T muons

- A reconstructed muon ("global" muon) in CMS is defined as a μ -chamber "seed", then matched to a track in the silicon tracker:
 - \blacktriangleright Curvature due to the B-field and material crossed limit the p_T acceptance
 - Problem with low-transverse momentum muons

► The idea of **tracker muons**:

- Perform the reconstruction inside out, starting from a silicon track and searching for any possible compatible muon signal in the chambers
 high p_Tmuon
- Tight selections on track-segment matching required to keep hadron background under control
- Calorimeters can be also exploited to check compatibility with MIP energy deposits
- Efficiency is enhanced by a large factor, especially at law $\mathbf{p}_{1} = \mathbf{p}_{2} \mathbf{p}_{2} \mathbf{p}_{3} \mathbf{p}_{4} \mathbf{p}_{5}$

silicon tracker (only using the latter for momentum determination at low p_T)
 ▶ strong solenoidal magnetic field (3.8 T)
 ▶ Precise tracking

Quarkonia production mechanisms

• Prompt (including feed down from $\chi_c/\psi(2S) \rightarrow J/\psi$ and $\chi_b \rightarrow \Upsilon$) • Several theoretical mechanisms contributing:

Color Singlet Model (CSM): calculations now available at NNLO
 Color Octet Model (COM)

▶ No model can predict successfully both cross-section and polarization at Tevatron and at HERA ▶ As a decay product of a B-hadron $(\mathbf{B} \rightarrow \mathbf{J}/\psi + \mathbf{X})$

Determination of the J/ ψ Cross-Section

low p_T (e.g. by a factor 2 at $p_T = 2.5 \text{GeV}/\text{c}$)

Expected results at $\sqrt{s} = 14$ TeV (2007)

Exercise using 3 pb⁻¹ of integrated luminosity of √s = 14TeV MC data [2]:
 Used only "global muon" pairs

▶ Used a double-muon trigger with $p_T^\mu > 3 GeV/c$

J/ψ yield fit results:
15 p_T bins: 5< p_T <40 GeV/c
1 bin: |η| < 2.4

Resolution on invariant mass:

 $\begin{cases} \sigma^{\text{barrel}}_{\mathsf{M}(\mu\mu)} \simeq 20 \text{ MeV/}\mathbf{c}^2\\ \sigma^{\text{endcaps}}_{\mathsf{M}(\mu\mu)} \simeq 37 \text{ MeV/}\mathbf{c}^2 \end{cases}$

- **B** fraction extraction:
- ► U.M.L. fit do data
- No bias observed in the fitting technique
- Stat. uncertainties on $N_{fit}^{J/\psi}$:

 $(\delta N/N)_{stat}^{prompt} \simeq 1.8\%-5\%$ $(\delta N/N)_{stat}^{b \rightarrow J/\psi} \simeq 2\%-10\%$

- The J/ψ differential cross section times its branching ratio into two muons will be measured in the muon pseudorapidity region $|\eta| < 2.4$.
- It is based on the following expression:

$$\frac{\mathsf{d}\sigma(\mathsf{pp}\to\mathsf{J}/\Psi)}{\mathsf{dp}_{\mathsf{T}}}\times\mathsf{Br}(\mathsf{J}/\Psi\to\mu^{+}\mu^{-})=\frac{\mathsf{N}_{\mathsf{J}/\Psi}^{\mathsf{fit}}(\mathsf{p}_{\mathsf{T}})}{\int\mathcal{L}\mathsf{dt}\cdot\mathcal{A}\cdot\varepsilon\cdot\Delta\mathsf{p}_{\mathsf{T}}}$$

► where:

 $\begin{tabular}{ll} $ N_{J/\Psi}^{fit} = (1 - f_b) N_{J/\Psi}^{tot} (\text{prompt}) \text{ or } f_b N_{J/\Psi}^{tot} (\text{non prompt}): \text{ number of } \\ $ reconstructed $ J/\psi's$ in a given $ p_T$ bin. Extracted from fit to invariant mass of $ the two reconstructed muons. $ \end{tabular} \end{tabular}$

L = $\int \mathcal{L} dt$ integrated luminosity

▲ Detector geometrical and kinematical acceptance (from MC modeling)
 ε = ε_{trig} · ε_{reco} trigger/reconstruction efficiency (correction evaluated from Monte Carlo simulation and data-driven methods)

 $\blacktriangleright \Delta p_T$ the p_T bin size

B-fraction extraction

Using a 2D-fit to invariant mass and proper deacay length distributions:
 Proper decay length calculated from decay length in the lab frame
 Secondary vertex from a Kalman vertex fit to the two muon tracks

Analysis of systematic errors:

Parameter affected	Source	$\Delta\sigma/\sigma$	
Luminosity	Luminosity	\simeq 10 %	
Total Efficiency	${\sf J}/\psi$ polarization	1.8 -7 %	
Number of ${f J}/\psi$	${\sf J}/\psi$ mass fit	1.0 - 6.3 %	
B fraction	Misalignment	0.7 - 3.5 %	
Total sytematic uncertainty 13-19 %			

First results at $\sqrt{s} = 7 \text{TeV} (2010)$

- In 2010 LHC has started to deliver high energy proton-proton collisions:
 First CMS quarkonium analysis with 0.985 nb⁻¹ at a c.o.m energy of 7 TeV
- ▶ Requirement of single-µ trigger at L1 (first level)
 ▶ A looser ("tracker" + "global") and a tighter ("global") selection is applied to the muon ID

Category	mass [MeV/ c^2]	rms [MeV/ c^2]	Signal events
Looser	3097 ± 7	42.5 ± 6.3	72 ± 12
Tighter	3094 ± 9	35.3 ± 6.8	24 ± 5

As expected the yield of muon pairs is more than doubled

11 11.5

μμ invariant mass [GeV/c²]

process, with n=1,2,3 (b)

- This variable allows to discriminate the two types of decay:
 - For prompt events a δ function[†] is expected
 - For non-prompt events, it has an exponential shape[†] with λ_{eff}^{B} (but smearing effects must be considered since in this case we are using the "pseudo"-proper decay length, i.e. $(M/p_T)_{J/\psi}$ instead of $(M/p_T)_{B}$)
 - For <u>background events</u> a generic superposition of different contributions[†] (symmetric + asymmetric with effective lifetimes) is adopted
- \dagger = convoluted with a double-Gaussian resolution function

using "tracker" muons

μ⁺ μ⁻ mass (GeV/ở)

5 10 15 20 25 30

References

8.5

9.5

[1] CMS Collaboration, *Physics TDR vol. I.* (2006) CERN/LHCC 2006-001

[2] CMS Collaboration, *Physics Analysis Summary BPH-07-002* (2007)

FPCP2010: Flavor Physics & CP Violation, May 25-29 2010 Torino - Italy

Marco Musich (musich@to.infn.it)