
The dominant dependence of ∆α(t) expected from theory is logarithmic. However within
the kinematic region of this analysis it may be approximated with a straight line. There
is no statistical sensitivity to deviations from a linear behaviour of the running. So we
fitted the ratios as:

R(t) = a + b|t| (7)

The b slope represents the full observable effect of the running of α(t), both the leptonic
and the hadronic component. It is related to the variation of the coupling by:

b = 2
∆α(t2) − ∆α(t1)

|t2| − |t1| =
2

|t2| − |t1|
α−1(t2) − α−1(t1)

α−1
0

(8)

where t1 and t2 correspond to the acceptance limits.

• The hadronic contribution to the vacuum polarization is included in the Monte Carlo
with the parameterization [16] of the form :

∆αhad = A + B ln (1 + C |t|) (9)

The coefficients A, B and C have different values in intervals of |t| which depend on the
detailed method of extraction of the parameterization. We fixed A and C to their values
at the average |t| of our data sample, leaving B as a free parameter. In this case the
leptonic contribution to the vacuum polarization ∆αlep was kept at the calculated value.

The effective slope defined in (7) is slightly variable for the different data samples, as their
average centre-of-mass energy varies. To combine the results we can practically redefine b in
(7) as:

b = b∗
∆t∗

∆t
(10)

where ∆t is the actual energy-dependent t range, ∆t∗ corresponds to a reference centre-of-mass
energy

√
s = 91.1 GeV, and then fit for b∗. With the acceptance cuts specified in section 4 the

reference t range is: t∗1 = −1.78 GeV2, t∗2 = −5.96 GeV2, ∆t∗ = |t∗2| − |t∗1| = 4.18 GeV2.

3 Detector, data samples and Monte Carlo simulation

The OPAL detector and trigger have been described in detail elsewhere [17]. In particular this
analysis is based on the silicon-tungsten luminometer (SiW), which was used to determine the
luminosity from the counting rate of accepted Bhabha events, starting from 1993. The SiW was
designed to improve the precision of the luminosity measurement to better than 1 per mille.
In fact it achieved a fractional experimental systematic error of 3.4 × 10−4. The detector and
the luminosity measurement are extensively described in [12]. Here we only review briefly the
detector aspects relevant for this analysis.

The OPAL SiW luminometer consisted of 2 identical cylindrical calorimeters, encircling the
beam pipe simmetrically at about ±2.5 m from the interaction point. Each calorimeter is a
stack of 19 silicon layers interleaved with 18 tungsten plates, with a sensitive depth of 14 cm,
representing 22 radiation lenghts (X0). The first 14 tungsten plates are each 1 X0 thick, while

4

1

2



Summary of Comments on 
paper.1.0.dvi
Page: 5
Sequence number: 1
Author: Richard Kellogg
Subject: Note
Date: 14.4.2004 2:54:16 PM 

after sent containing Eq. 8:
add:
The parameter a is not relevant, but is approximately 1, since the Monte Carlo is normalized to the data.
 

Sequence number: 2
Author: Richard Kellogg
Subject: Note
Date: 14.4.2004 2:36:03 PM 

end of sec 2:

give expected value of b.  Discuss the scale of systematic effects which could mimic the expected running 
ala your email of 2-apr-2004
 



the last 4 are each 2 X0 thick. The sensitive area fully covers radii between 6.2 and 14.2 cm
from the beam axis. Each detector layer is segmented with R − φ geometry in a 32 × 32
pad array. The pad size is 2.5 mm radially and 11.25 degrees in azimuth. In total the whole
luminometer had 38,912 readout channels corresponding to the individual silicon pads. The
calibration was studied with electrical pulses generated both on the readout chips and on the
front-end boards, as well as with ionization signals generated in the silicon using test beams
and laboratory sources. Overall pad-to-pad gain variations were within 1%.

We use the data samples collected in 1993-95 at energies close to the Z resonance peak. In
total they amount to 101 pb−1 of OPAL data.

For the LEP2 data-taking started in 1996 the detector configuration changed, with the instal-
lation of tungsten shields designed to protect the inner tracking detectors from synchrotron
radiation. These introduced about 50 radiation lengths of material in front of the calorimeters
between 26 and 33 mrad from the beam axis, thus reducing the useful acceptance of the detec-
tor at the lower polar angle limit. Moreover the new fiducial acceptance cut fell right in the
middle of the previous acceptance, where the preshowering material was maximum. For these
reasons we have limited this analysis to the LEP1 data samples.

The OPAL SiW detector simulation does not rely on a detailed physical simulation of electro-
magnetic showers in the detector. Instead it is based on a parameterization of the detector
response obtained from the data [12]. This approach gives a much more reliable description
of the tails of the detector response functions, which are primarily due to extreme fluctuations
in shower development, than we could obtain using any existing program which attempts to
simulate the basic interactions of electrons and photons in matter. The measured LEP beam
size and divergence, as well as the measured offset and tilt of the beam with respect to the
calorimeters are also incorporated in this simulation. The Monte Carlo simulation is used to
correct the acceptance for the effects of the detector energy response, the coordinate resolution
and LEP beam parameters. The data are divided in 9 subsamples according to the average
centre-of-mass energy and the values of the beam parameters, which slightly varied. For each
subsample we generated an independent sample of BHLUMI events subjected to detector sim-
ulation with corresponding setting of the parameters. The statistics were always at least 10
times those of the corresponding data set.

There are other acceptance corrections which are not accounted by the Monte Carlo simulation,
but rather applied directly to data. These include the trigger efficiency, accidental background,
detector metrology and most importantly biases in the reconstructed radial coordinate. The
latter is crucial for this analysis and will be discussed in section 5.

4 Event selection

The event selection criteria can be classified into isolation cuts, which isolate a sample of pure
Bhabha scattering events from the off-momentum background, and acceptance defining, or
definition cuts. The isolation cuts are used to define a fiducial set of events which lie within the
good acceptance of both calorimeters and are essentially background free. The definition cuts
then select subsets of events from within the fiducial sample. Showers generated by incident
electrons and photons are recognized as clusters in the calorimeters and their energies and
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to the true σ. The uncertainty on the conversion factor from σa to σ has been estimated from
the difference between the test beam with no additional material and with 0.84 X0 of material
in front of the detector.

In OPAL data Roff measures the shift of the observed pad boundary image from the nominal
position of the pad boundary. Such shifts can be produced by a large number of causes: pad
gain fluctuations, metrology shifts, detector malfunctions, resolution effects and preshowering.
The pad boundary bias is determined by converting the apparent σa to the true σ and then
using the test beam results to find the corresponding geometric bias. Fig. 2 shows that a
gaussian resolution does not perfectly describe the tails of the distribution. To the extent
that the pad boundary image maintains an odd symmetry about the apparent pad boundary,
its non-gaussian behaviour does not affect the determination of Roff as can be seen from the
close agreement of the data points and the fitted curve near the pad boundary. We have also
considered a model in which the apparent pad boundary is taken as the median of the observed
resolution function. The difference between the two models is assigned as a systematic error
of the fit method, when it is larger than the fit statistical error, otherwise the latter is kept as
estimate. A further difference of the test beam with respect to the OPAL data is that it was
carried out at a radial position close to the inner acceptance cut. The geometrical bias due to
R − φ pads is expected to scale as 1/R, thus decreasing at a greater radius of pad curvature.
Therefore we have scaled in this way the bias estimated by using the test beam results, but
assign an additional systematic error equal to 50% of the expected bias to account for possible
deviations from this behaviour.

The total net bias (also called anchor) δR on the position of a pad boundary is given by:

δR = Roff + δRRφ + δRres (11)

where Roff is the coordinate offset which may have positive or negative sign, δRRφ is the
pad boundary bias, always positive and δRres is a small (positive) additional bias due to the
resolution flow. The latter results from the steeply falling radial resolution and can be thought
as a second-order effect.

From Fig. 2 one can see that the width is similar at the inner and outer radius, while it is
considerably greater at the central radius. The offset Roff is found very small at the inner
edge while it increases to ≈ 10 − 20 µm at the central and the outer radius. Among other
effects, the observed Roff is affected by fluctuations in the pad gain. We have checked these
effects directly on data, by studying Roff as a function of the 32 azimuthal divisions of the
calorimeters. We assign the size of the azimuthal variations, (Roff )RMS/

√
32, as a systematic

error in the anchors, due to pad gain vaiations.

The anchors determined from 1993-94 data for the layers at 4 X0 and all the pad boundaries
used in the analysis are shown in Fig. 3. A similar trend is visible in the two sides, in particular
the rise of the anchor from about zero at the inner edge to 20 − 25 µm around R = 9 cm.
The inner error bars are the statistical errors in the fit of the pad boundary images. The full
error bars include in quadrature the systematic errors from: fit method, pad gain variations, σa

conversion, test beam parameterization and the assumed 1/R scaling of the pad boundary bias.
The anchors determined from 1995 data have similar features although with lower statistics.

The anchors have been determined separately for 1993-94 and 1995 data, because the amount
of preshowering material was different in the two sub-samples. A clear relation with the amount

8

1

2

3



 
Page: 9
Sequence number: 1
Author: Richard Kellogg
Subject: Highlight
Date: 13.4.2004 3:57:59 PM 

median of the observed
resolution function

question:
Do you mean "mean" rather than "median" here?  I believe the method already  described finds the median.
 

Sequence number: 2
Author: Richard Kellogg
Subject: Highlight
Date: 14.4.2004 6:39:39 PM 

replace:
A further difference of the test beam with respect to the OPAL data is that it was carried out at a radial 
position close to the inner acceptance cut

with:
The determination of the pad boundary bias in the test beam was carried out at a radial position close to the 
inner acceptance cut to provide optimal information for the luminosity determination.  In this analysis we 
have a greater dependence on knowing the pad boundary bias throughout the detector.
 

Sequence number: 3
Author: Richard Kellogg
Subject: Highlight
Date: 13.4.2004 4:30:20 PM 

replace:
resolution flow. The latter results from the steeply falling radial resolution and can be thought as a second-
order effect.

with:
{\em resolution flow}.  This second order effect arises 
whenever a cut is imposed on a quantity with a steeply falling distribution.
An acceptance change is introduced due to the fact that more events
actually on the uphill side
of the cut will be measured to fall on the downhill side than vice--versa.
This resolution flow can be expressed as
\begin{equation}
    \frac{\Delta A}{A} =
    \frac{{\mathrm{d}}f}{{\mathrm{d}}x} \frac{\sigma_{x}^{2}}{2}
\label{eq:resflow}
\end{equation}
\noindent
where $f(x)$ is the intensity of events normalized to unity over the entire
acceptance, and $\sigma_{x}$ is  the resolution in the variable $x$ upon


Comments from page 9 continued on next page



to the true σ. The uncertainty on the conversion factor from σa to σ has been estimated from
the difference between the test beam with no additional material and with 0.84 X0 of material
in front of the detector.

In OPAL data Roff measures the shift of the observed pad boundary image from the nominal
position of the pad boundary. Such shifts can be produced by a large number of causes: pad
gain fluctuations, metrology shifts, detector malfunctions, resolution effects and preshowering.
The pad boundary bias is determined by converting the apparent σa to the true σ and then
using the test beam results to find the corresponding geometric bias. Fig. 2 shows that a
gaussian resolution does not perfectly describe the tails of the distribution. To the extent
that the pad boundary image maintains an odd symmetry about the apparent pad boundary,
its non-gaussian behaviour does not affect the determination of Roff as can be seen from the
close agreement of the data points and the fitted curve near the pad boundary. We have also
considered a model in which the apparent pad boundary is taken as the median of the observed
resolution function. The difference between the two models is assigned as a systematic error
of the fit method, when it is larger than the fit statistical error, otherwise the latter is kept as
estimate. A further difference of the test beam with respect to the OPAL data is that it was
carried out at a radial position close to the inner acceptance cut. The geometrical bias due to
R − φ pads is expected to scale as 1/R, thus decreasing at a greater radius of pad curvature.
Therefore we have scaled in this way the bias estimated by using the test beam results, but
assign an additional systematic error equal to 50% of the expected bias to account for possible
deviations from this behaviour.

The total net bias (also called anchor) δR on the position of a pad boundary is given by:

δR = Roff + δRRφ + δRres (11)

where Roff is the coordinate offset which may have positive or negative sign, δRRφ is the
pad boundary bias, always positive and δRres is a small (positive) additional bias due to the
resolution flow. The latter results from the steeply falling radial resolution and can be thought
as a second-order effect.

From Fig. 2 one can see that the width is similar at the inner and outer radius, while it is
considerably greater at the central radius. The offset Roff is found very small at the inner
edge while it increases to ≈ 10 − 20 µm at the central and the outer radius. Among other
effects, the observed Roff is affected by fluctuations in the pad gain. We have checked these
effects directly on data, by studying Roff as a function of the 32 azimuthal divisions of the
calorimeters. We assign the size of the azimuthal variations, (Roff )RMS/

√
32, as a systematic

error in the anchors, due to pad gain vaiations.

The anchors determined from 1993-94 data for the layers at 4 X0 and all the pad boundaries
used in the analysis are shown in Fig. 3. A similar trend is visible in the two sides, in particular
the rise of the anchor from about zero at the inner edge to 20 − 25 µm around R = 9 cm.
The inner error bars are the statistical errors in the fit of the pad boundary images. The full
error bars include in quadrature the systematic errors from: fit method, pad gain variations, σa

conversion, test beam parameterization and the assumed 1/R scaling of the pad boundary bias.
The anchors determined from 1995 data have similar features although with lower statistics.

The anchors have been determined separately for 1993-94 and 1995 data, because the amount
of preshowering material was different in the two sub-samples. A clear relation with the amount
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and distribution of the material upstream of the calorimeters is visible from the apparent width
σa as a function of radius, as shown in Fig. 4. The distribution of material upstream of the
calorimeters was kept at a minimum especially in the crucial region of the inner acceptance cut
where it amounts to 0.25 X0. In the middle of the acceptance this material increases to about
2 X0 due to cables and support structures of the beam pipe. The remarkable difference between
the Right and Left widths in 1993-94 data is due to passage of cables from the OPAL microvertex
detector. For 1995 data additional cables were installed in the Right side, which restored
an almost symmetrical situation. The presence of a non-negligible amount of preshowering
material in the middle of the acceptance constitutes the most delicate experimental problem,
as the anchoring procedure was developed and checked at the test beam only for the almost
ideal situation of a bare calorimeter or of less than 1 X0 of preshowering material. Therefore
we checked thoroughly the anchoring procedure in OPAL data before trusting its results.

The acceptance of an individual radial bin with boundaries (Rinn, Rout) is corrected by in-
troducing the anchors δRinn, δRout determined as in (11) in the following formula, giving the
fractional correction:

δA

A
= cinn δRinn − cout δRout (12)

The coefficients cinn and cout are derived by a simple analytical calculation assuming a 1/θ3

spectrum for the angular distribution and are given by:

ck =

1
R3

k

1
2

(
1

R2
inn

− 1
R2

out

) k = inn, out (13)

The corrections are at most 0.5% (1%) for the Right (Left) side in 1993-94 data and 0.8%
(0.7%) for the Right (Left) side in 1995 data.

The reconstructed radial coordinate can be studied by simultaneously varying the value of the
radial cut in the data and in the Monte Carlo. The Monte Carlo assumes that the radial
coordinate is reconstructed without bias. Thus any difference in the acceptance of the data
and Monte Carlo as the inner cut is varied, beyond that expected from the finite statistics,
can be attributed to biases in the radial coordinate. The relative acceptance, as a function of
the value of the inner radial definition cut is shown for the Right and the Left side selection
in Fig. 5 for 1993-94 data. The width of the shaded bands represents the binomial errors with
respect to the reference selection 7.20 cm ≤ R ≤ 13.20 cm. The solid points show the anchoring
results for all the relevant pad boundaries in layers between 1 X0 and 10 X0. The estimated
radial biases are converted into acceptance variations using the formula:

δA

A
= 2

R2
innR

2
out

R2
out − R2

inn

δR

R3
(14)

where Rinn = 7.20 cm, Rout = 13.20 cm and R is varied from Rinn to Rout. Since the normal-
ization is the total acceptance, the low R points have a greater weight in the plot, as is implied
by the 1/R3 dependence. Therefore any visible structure tends to be flattened at increasing
radius.

In the plot the anchor at the inner cut R = 7.20 cm in layer 7 X0 has been required to lie at
zero. Each group of nearby points, marked by either circles or triangles, refer to a given pad
row boundary in different layers, that is at variable depth into the calorimeters. Since all the
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and distribution of the material upstream of the calorimeters is visible from the apparent width
σa as a function of radius, as shown in Fig. 4. The distribution of material upstream of the
calorimeters was kept at a minimum especially in the crucial region of the inner acceptance cut
where it amounts to 0.25 X0. In the middle of the acceptance this material increases to about
2 X0 due to cables and support structures of the beam pipe. The remarkable difference between
the Right and Left widths in 1993-94 data is due to passage of cables from the OPAL microvertex
detector. For 1995 data additional cables were installed in the Right side, which restored
an almost symmetrical situation. The presence of a non-negligible amount of preshowering
material in the middle of the acceptance constitutes the most delicate experimental problem,
as the anchoring procedure was developed and checked at the test beam only for the almost
ideal situation of a bare calorimeter or of less than 1 X0 of preshowering material. Therefore
we checked thoroughly the anchoring procedure in OPAL data before trusting its results.

The acceptance of an individual radial bin with boundaries (Rinn, Rout) is corrected by in-
troducing the anchors δRinn, δRout determined as in (11) in the following formula, giving the
fractional correction:

δA

A
= cinn δRinn − cout δRout (12)

The coefficients cinn and cout are derived by a simple analytical calculation assuming a 1/θ3

spectrum for the angular distribution and are given by:

ck =

1
R3

k

1
2

(
1

R2
inn

− 1
R2

out

) k = inn, out (13)

The corrections are at most 0.5% (1%) for the Right (Left) side in 1993-94 data and 0.8%
(0.7%) for the Right (Left) side in 1995 data.

The reconstructed radial coordinate can be studied by simultaneously varying the value of the
radial cut in the data and in the Monte Carlo. The Monte Carlo assumes that the radial
coordinate is reconstructed without bias. Thus any difference in the acceptance of the data
and Monte Carlo as the inner cut is varied, beyond that expected from the finite statistics,
can be attributed to biases in the radial coordinate. The relative acceptance, as a function of
the value of the inner radial definition cut is shown for the Right and the Left side selection
in Fig. 5 for 1993-94 data. The width of the shaded bands represents the binomial errors with
respect to the reference selection 7.20 cm ≤ R ≤ 13.20 cm. The solid points show the anchoring
results for all the relevant pad boundaries in layers between 1 X0 and 10 X0. The estimated
radial biases are converted into acceptance variations using the formula:

δA

A
= 2

R2
innR

2
out

R2
out − R2

inn

δR

R3
(14)

where Rinn = 7.20 cm, Rout = 13.20 cm and R is varied from Rinn to Rout. Since the normal-
ization is the total acceptance, the low R points have a greater weight in the plot, as is implied
by the 1/R3 dependence. Therefore any visible structure tends to be flattened at increasing
radius.

In the plot the anchor at the inner cut R = 7.20 cm in layer 7 X0 has been required to lie at
zero. Each group of nearby points, marked by either circles or triangles, refer to a given pad
row boundary in different layers, that is at variable depth into the calorimeters. Since all the
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and distribution of the material upstream of the calorimeters is visible from the apparent width
σa as a function of radius, as shown in Fig. 4. The distribution of material upstream of the
calorimeters was kept at a minimum especially in the crucial region of the inner acceptance cut
where it amounts to 0.25 X0. In the middle of the acceptance this material increases to about
2 X0 due to cables and support structures of the beam pipe. The remarkable difference between
the Right and Left widths in 1993-94 data is due to passage of cables from the OPAL microvertex
detector. For 1995 data additional cables were installed in the Right side, which restored
an almost symmetrical situation. The presence of a non-negligible amount of preshowering
material in the middle of the acceptance constitutes the most delicate experimental problem,
as the anchoring procedure was developed and checked at the test beam only for the almost
ideal situation of a bare calorimeter or of less than 1 X0 of preshowering material. Therefore
we checked thoroughly the anchoring procedure in OPAL data before trusting its results.

The acceptance of an individual radial bin with boundaries (Rinn, Rout) is corrected by in-
troducing the anchors δRinn, δRout determined as in (11) in the following formula, giving the
fractional correction:

δA

A
= cinn δRinn − cout δRout (12)

The coefficients cinn and cout are derived by a simple analytical calculation assuming a 1/θ3

spectrum for the angular distribution and are given by:

ck =
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k
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) k = inn, out (13)

The corrections are at most 0.5% (1%) for the Right (Left) side in 1993-94 data and 0.8%
(0.7%) for the Right (Left) side in 1995 data.

The reconstructed radial coordinate can be studied by simultaneously varying the value of the
radial cut in the data and in the Monte Carlo. The Monte Carlo assumes that the radial
coordinate is reconstructed without bias. Thus any difference in the acceptance of the data
and Monte Carlo as the inner cut is varied, beyond that expected from the finite statistics,
can be attributed to biases in the radial coordinate. The relative acceptance, as a function of
the value of the inner radial definition cut is shown for the Right and the Left side selection
in Fig. 5 for 1993-94 data. The width of the shaded bands represents the binomial errors with
respect to the reference selection 7.20 cm ≤ R ≤ 13.20 cm. The solid points show the anchoring
results for all the relevant pad boundaries in layers between 1 X0 and 10 X0. The estimated
radial biases are converted into acceptance variations using the formula:

δA

A
= 2

R2
innR

2
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R3
(14)

where Rinn = 7.20 cm, Rout = 13.20 cm and R is varied from Rinn to Rout. Since the normal-
ization is the total acceptance, the low R points have a greater weight in the plot, as is implied
by the 1/R3 dependence. Therefore any visible structure tends to be flattened at increasing
radius.

In the plot the anchor at the inner cut R = 7.20 cm in layer 7 X0 has been required to lie at
zero. Each group of nearby points, marked by either circles or triangles, refer to a given pad
row boundary in different layers, that is at variable depth into the calorimeters. Since all the
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coordinates are projected to the reference layer 7 X0 they are spaced by about 200 µm at the
inner radius and by about 350 µm at the outer radius from one layer to the other. The arrows
mark the position of a given pad row boundary in layer 7 X0, deeper layers have a lower R and
shallower layers a higher R.

As the plot shows the variation in the integrated acceptance, the most relevant thing to inspect
is the slope of the acceptance variation as the radius is varied. Moreover the plot shows as
reference the anchors in layer 7 X0, as the starting value at R = 7.20 cm is set to zero,
coincident with origin of the band. If an alternative layer is chosen the normalization should
be done with respect to that point. The applicability of the method appears safe for the range
of layers which give an almost flat behaviour, compatible with the shaded band. A discrepancy
is apparent for the deepest layers considered (8 − 10 X0), in particular for the Left side. This
is most evident in the central region of acceptance, where the amount of material between the
detector and the interaction point is large and the test beam measurement of the expected bias
may no longer be applicable. To stay away from such problems we have selected layer 4 X0

as the central layer for anchoring, and checked the results with alternative anchors from layer
1 X0 to layer 7 X0.

An amazing illustration of the anchoring capability is possible by downgrading the quality of the
reconstructed radial coordinate and then determining the resulting (larger) radial biases. The
last step in radial reconstruction before the anchoring procedure is a smoothing algorithm [12],
which was implemented to remove a residual bias resulting from the variable position resolution
across the pad structure of the detector. This bias has a maximum amplitude of ±50 µm and
has a periodic structure with period equal to the 2.5 mm pad width. If we repeat the game
of Fig. 5, switching off the smoothing from the radial reconstruction, the result is Fig. 6. The
alternative anchors track the expected acceptance variations for each of the pad rows and most
of the depth range studied. Similar considerations apply here as said before. The anchoring
has been further checked in the following section 7.1.

6 Fit

The fit results on the nine data sets are shown in Table 1. Each number is obtained by a linear
fit as (7) on 24 points. Data have been corrected with anchors on layer 4 X0 and only the
data statistical errors are considered. The nine samples give consistent results, with χ2 of the
average of 6.5/8 for the Right side and 5.6/8 for the Left side. However the quality of some
of the individual fits is not good in particular on the Left side. Considering for example the
largest dataset (94 b) the χ2 of the linear fit (7) is 27.8/22 on the Right side and 101.9/22 on
the Left side. To sharpen the sensitivity to correlated systematic effects we combined the six
1993-94 distributions, the three 1995 distributions and also all the nine distributions together.
We checked the quality of the fits by including also the anchoring systematic errors, discussed
in the previous section. They all have been conservatively considered uncorrelated as a function
of radius, except for the error of the fit method. Uncorrelated errors on the anchors actually
produce anti-correlations between adjacent bins. These short range effects may deteriorate
greatly the fit χ2 even if producing small effects on the fitted slope. We have then built 24×24
covariance matrices implementing these systematic errors for radial distributions binned with
1 bin equal to 1 detector pad (2.5 mm). We checked the fit χ2 both before and after the
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Page: 11
Sequence number: 1
Author: Richard Kellogg
Subject: Highlight
Date: 14.4.2004 5:59:26 PM 

replace:
reference layer 7 X0 they are spaced
with:
reference layer 7 X0 the pad boundaries at the same radius in adjacent layers are spaced
 

Sequence number: 2
Author: Richard Kellogg
Subject: Highlight
Date: 14.4.2004 5:59:51 PM 

remove:
from one layer to the other.
 

Sequence number: 3
Author: Richard Kellogg
Subject: Highlight
Date: 14.4.2004 5:41:30 PM 

replace:
As the plot shows the variation in the integrated acceptance, the most relevant thing to inspect is the slope 
of the acceptance variation as the radius is varied. Moreover the plot shows as
reference the anchors in layer 7 X0, as the starting value at R = 7.20 cm is set to zero, coincident with 
origin of the band. If an alternative layer is chosen the normalization should be done with respect to that 
point. The applicability of the method appears safe for the range of layers which give an almost flat 
behaviour, compatible with the shaded band
with:
The essential point of Fig. 5 is that the anchor points derived from individual pad boundaries should follow 
the relative acceptance band derived from the distribution of coordinates, since this shows that the two 
independent methods of determining shower positions in the calorimeter are in agreement.  It must also be 
remembered that the choice of which anchor to use in fixing the global offset of the radial coordinate is 
arbitrary.

Almost all anchors are found to be consistent, even in those regions where the relative acceptance  band 
reveals the presence of residual structure in the coordinate.
 

Sequence number: 4
Author: Richard Kellogg
Subject: Highlight
Date: 14.4.2004 6:01:19 PM 

replace:
A discrepancy is apparent
with:
Clear discrepancies are, however,
 


Comments from page 11 continued on next page



coordinates are projected to the reference layer 7 X0 they are spaced by about 200 µm at the
inner radius and by about 350 µm at the outer radius from one layer to the other. The arrows
mark the position of a given pad row boundary in layer 7 X0, deeper layers have a lower R and
shallower layers a higher R.

As the plot shows the variation in the integrated acceptance, the most relevant thing to inspect
is the slope of the acceptance variation as the radius is varied. Moreover the plot shows as
reference the anchors in layer 7 X0, as the starting value at R = 7.20 cm is set to zero,
coincident with origin of the band. If an alternative layer is chosen the normalization should
be done with respect to that point. The applicability of the method appears safe for the range
of layers which give an almost flat behaviour, compatible with the shaded band. A discrepancy
is apparent for the deepest layers considered (8 − 10 X0), in particular for the Left side. This
is most evident in the central region of acceptance, where the amount of material between the
detector and the interaction point is large and the test beam measurement of the expected bias
may no longer be applicable. To stay away from such problems we have selected layer 4 X0

as the central layer for anchoring, and checked the results with alternative anchors from layer
1 X0 to layer 7 X0.

An amazing illustration of the anchoring capability is possible by downgrading the quality of the
reconstructed radial coordinate and then determining the resulting (larger) radial biases. The
last step in radial reconstruction before the anchoring procedure is a smoothing algorithm [12],
which was implemented to remove a residual bias resulting from the variable position resolution
across the pad structure of the detector. This bias has a maximum amplitude of ±50 µm and
has a periodic structure with period equal to the 2.5 mm pad width. If we repeat the game
of Fig. 5, switching off the smoothing from the radial reconstruction, the result is Fig. 6. The
alternative anchors track the expected acceptance variations for each of the pad rows and most
of the depth range studied. Similar considerations apply here as said before. The anchoring
has been further checked in the following section 7.1.

6 Fit

The fit results on the nine data sets are shown in Table 1. Each number is obtained by a linear
fit as (7) on 24 points. Data have been corrected with anchors on layer 4 X0 and only the
data statistical errors are considered. The nine samples give consistent results, with χ2 of the
average of 6.5/8 for the Right side and 5.6/8 for the Left side. However the quality of some
of the individual fits is not good in particular on the Left side. Considering for example the
largest dataset (94 b) the χ2 of the linear fit (7) is 27.8/22 on the Right side and 101.9/22 on
the Left side. To sharpen the sensitivity to correlated systematic effects we combined the six
1993-94 distributions, the three 1995 distributions and also all the nine distributions together.
We checked the quality of the fits by including also the anchoring systematic errors, discussed
in the previous section. They all have been conservatively considered uncorrelated as a function
of radius, except for the error of the fit method. Uncorrelated errors on the anchors actually
produce anti-correlations between adjacent bins. These short range effects may deteriorate
greatly the fit χ2 even if producing small effects on the fitted slope. We have then built 24×24
covariance matrices implementing these systematic errors for radial distributions binned with
1 bin equal to 1 detector pad (2.5 mm). We checked the fit χ2 both before and after the
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Sequence number: 5
Author: Richard Kellogg
Subject: Highlight
Date: 14.4.2004 6:04:04 PM 

replace:
To stay away from such problems we have selected
with:
The behavior of the anchors with depth indicate that the onset of these problems is abrupt, and a large 
region of the detector remains well understood for use in our analysis.  We have therefore selected
 

Sequence number: 6
Author: Richard Kellogg
Subject: Highlight
Date: 14.4.2004 6:27:31 PM 

replace:
may no longer be
with:
is evidently no longer
 

Sequence number: 7
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Subject: Highlight
Date: 14.4.2004 6:04:42 PM 

replace:
game
with:
analysis
 




