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1 Introduction

The electromagnetic coupling constant is a basic parameter of the Standard Model, known to
4 × 10−9 [1]. In QED the coupling becomes effective or running with the scale of momentum
transfer due to vacuum polarization. This is due to virtual lepton or quark loops. Their
contribution increases the effective electric charge at increasing momentum transfer. This can
be understood as an effect of screening of a bare electric charge which is probed at smaller and
smaller distance. The effective QED coupling is generally expressed as:

α(Q2) =
α0

1 − ∆α(Q2)
(1)

where α0 = α(Q2 = 0) � 1/137.036 is the fine structure constant. Whereas the leptonic
contributions are calculable to very high accuracy, the hadronic ones are more problematic
as they involve quark masses and hadronic physics at low momentum scales. The hadronic
contribution is traditionally determined from a dispersion integral over a parameterization of
the measured annihilation cross section of e+e−→ hadrons, supplemented with perturbative
QCD above resonances [2, 3]. The main difficulty of this approach comes from the integration
of experimental data in the region of hadronic resonances, which in turn gives the dominant
uncertainty on ∆α for positive (timelike) Q2. The effective QED coupling α(Q2) is an essential
ingredient for many precision physics predictions. Its uncertainty is still one of the dominant
ones in the electroweak fits constraining the Higgs mass [4]. There are also many evaluations
which are more theory-driven, extending the application of perturbative QCD down to 2 GeV
or so (see for example the references in [4]). An alternative approach was put forward to use
the Adler function [5] and perturbative QCD in the negative Q2 (spacelike) region [6], where
∆α is a smooth function.

Until now there have been only a few direct observations of the running of the QED cou-
pling [7,8,9,10]. Most of these analyses involve measurements of cross sections and their ratios
and obtain values of α(Q2) which are found to deviate from α0 or from the assumed value of
the coupling at some initial scale. Theoretical uncertainties on the predicted absolute cross
sections as well as experimental scale errors can hurt such determinations or reduce their sig-
nificance. The s-channel results from the TOPAZ [7] and the OPAL [8] experiments were based
on e+e−annihilations to leptonic final states. Far enough from the Z resonance these processes
are dominated by single photon exchange, although they substantially involve the full elec-
troweak theory. Large angle Bhabha scattering has been studied by the VENUS [9] and L3 [10]
experiments to measure the running in the spacelike region. In this case both s- and t-channel
γ-exchange diagrams are important and the effective QED coupling appears as a function of s
or t respectively. Moreover weak contributions of Z-exchange interference are also sizeable.

In this paper we measure the running of α in the spacelike region, by studying the angular
dependence of the small angle Bhabha scattering. The spectrum is modified by the running
coupling which appears as α2(t) and the square momentum transfer t is simply related to the
polar scattering angle. We use the small angular region accepted for the luminosity measure-
ment, which approximately corresponds to 2 ≤ −t ≤ 6 GeV2 at centre-of-mass energy about
the Z resonance peak. At such t scale the average ∆α is about 2%. The counting rate of small
angle Bhabha events is used to determine the integrated luminosity, so that we cannot do an
absolute measurement of α(t), rather we will look only at the shape. This is affected by the
expected variation of the coupling throughout the acceptance, which is about 0.5%, leading
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1 Introduction

The electromagnetic coupling constant is a basic parameter of the Standard Model, known to
4 × 10−9 [1]. In QED the coupling becomes effective or running with the scale of momentum
transfer due to vacuum polarization. This is due to virtual lepton or quark loops. Their
contribution increases the effective electric charge at increasing momentum transfer. This can
be understood as an effect of screening of a bare electric charge which is probed at smaller and
smaller distance. The effective QED coupling is generally expressed as:

α(Q2) =
α0

1 − ∆α(Q2)
(1)

where α0 = α(Q2 = 0) � 1/137.036 is the fine structure constant. Whereas the leptonic
contributions are calculable to very high accuracy, the hadronic ones are more problematic
as they involve quark masses and hadronic physics at low momentum scales. The hadronic
contribution is traditionally determined from a dispersion integral over a parameterization of
the measured annihilation cross section of e+e−→ hadrons, supplemented with perturbative
QCD above resonances [2, 3]. The main difficulty of this approach comes from the integration
of experimental data in the region of hadronic resonances, which in turn gives the dominant
uncertainty on ∆α for positive (timelike) Q2. The effective QED coupling α(Q2) is an essential
ingredient for many precision physics predictions. Its uncertainty is still one of the dominant
ones in the electroweak fits constraining the Higgs mass [4]. There are also many evaluations
which are more theory-driven, extending the application of perturbative QCD down to 2 GeV
or so (see for example the references in [4]). An alternative approach was put forward to use
the Adler function [5] and perturbative QCD in the negative Q2 (spacelike) region [6], where
∆α is a smooth function.

Until now there have been only a few direct observations of the running of the QED cou-
pling [7,8,9,10]. Most of these analyses involve measurements of cross sections and their ratios
and obtain values of α(Q2) which are found to deviate from α0 or from the assumed value of
the coupling at some initial scale. Theoretical uncertainties on the predicted absolute cross
sections as well as experimental scale errors can hurt such determinations or reduce their sig-
nificance. The s-channel results from the TOPAZ [7] and the OPAL [8] experiments were based
on e+e−annihilations to leptonic final states. Far enough from the Z resonance these processes
are dominated by single photon exchange, although they substantially involve the full elec-
troweak theory. Large angle Bhabha scattering has been studied by the VENUS [9] and L3 [10]
experiments to measure the running in the spacelike region. In this case both s- and t-channel
γ-exchange diagrams are important and the effective QED coupling appears as a function of s
or t respectively. Moreover weak contributions of Z-exchange interference are also sizeable.

In this paper we measure the running of α in the spacelike region, by studying the angular
dependence of the small angle Bhabha scattering. The spectrum is modified by the running
coupling which appears as α2(t) and the square momentum transfer t is simply related to the
polar scattering angle. We use the small angular region accepted for the luminosity measure-
ment, which approximately corresponds to 2 ≤ −t ≤ 6 GeV2 at centre-of-mass energy about
the Z resonance peak. At such t scale the average ∆α is about 2%. The counting rate of small
angle Bhabha events is used to determine the integrated luminosity, so that we cannot do an
absolute measurement of α(t), rather we will look only at the shape. This is affected by the
expected variation of the coupling throughout the acceptance, which is about 0.5%, leading
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1 Introduction

The electromagnetic coupling constant is a basic parameter of the Standard Model, known to
4 × 10−9 [1]. In QED the coupling becomes effective or running with the scale of momentum
transfer due to vacuum polarization. This is due to virtual lepton or quark loops. Their
contribution increases the effective electric charge at increasing momentum transfer. This can
be understood as an effect of screening of a bare electric charge which is probed at smaller and
smaller distance. The effective QED coupling is generally expressed as:

α(Q2) =
α0

1 − ∆α(Q2)
(1)

where α0 = α(Q2 = 0) � 1/137.036 is the fine structure constant. Whereas the leptonic
contributions are calculable to very high accuracy, the hadronic ones are more problematic
as they involve quark masses and hadronic physics at low momentum scales. The hadronic
contribution is traditionally determined from a dispersion integral over a parameterization of
the measured annihilation cross section of e+e−→ hadrons, supplemented with perturbative
QCD above resonances [2, 3]. The main difficulty of this approach comes from the integration
of experimental data in the region of hadronic resonances, which in turn gives the dominant
uncertainty on ∆α for positive (timelike) Q2. The effective QED coupling α(Q2) is an essential
ingredient for many precision physics predictions. Its uncertainty is still one of the dominant
ones in the electroweak fits constraining the Higgs mass [4]. There are also many evaluations
which are more theory-driven, extending the application of perturbative QCD down to 2 GeV
or so (see for example the references in [4]). An alternative approach was put forward to use
the Adler function [5] and perturbative QCD in the negative Q2 (spacelike) region [6], where
∆α is a smooth function.

Until now there have been only a few direct observations of the running of the QED cou-
pling [7,8,9,10]. Most of these analyses involve measurements of cross sections and their ratios
and obtain values of α(Q2) which are found to deviate from α0 or from the assumed value of
the coupling at some initial scale. Theoretical uncertainties on the predicted absolute cross
sections as well as experimental scale errors can hurt such determinations or reduce their sig-
nificance. The s-channel results from the TOPAZ [7] and the OPAL [8] experiments were based
on e+e−annihilations to leptonic final states. Far enough from the Z resonance these processes
are dominated by single photon exchange, although they substantially involve the full elec-
troweak theory. Large angle Bhabha scattering has been studied by the VENUS [9] and L3 [10]
experiments to measure the running in the spacelike region. In this case both s- and t-channel
γ-exchange diagrams are important and the effective QED coupling appears as a function of s
or t respectively. Moreover weak contributions of Z-exchange interference are also sizeable.

In this paper we measure the running of α in the spacelike region, by studying the angular
dependence of the small angle Bhabha scattering. The spectrum is modified by the running
coupling which appears as α2(t) and the square momentum transfer t is simply related to the
polar scattering angle. We use the small angular region accepted for the luminosity measure-
ment, which approximately corresponds to 2 ≤ −t ≤ 6 GeV2 at centre-of-mass energy about
the Z resonance peak. At such t scale the average ∆α is about 2%. The counting rate of small
angle Bhabha events is used to determine the integrated luminosity, so that we cannot do an
absolute measurement of α(t), rather we will look only at the shape. This is affected by the
expected variation of the coupling throughout the acceptance, which is about 0.5%, leading
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1 Introduction

The electromagnetic coupling constant is a basic parameter of the Standard Model, known to
4 × 10−9 [1]. In QED the coupling becomes effective or running with the scale of momentum
transfer due to vacuum polarization. This is due to virtual lepton or quark loops. Their
contribution increases the effective electric charge at increasing momentum transfer. This can
be understood as an effect of screening of a bare electric charge which is probed at smaller and
smaller distance. The effective QED coupling is generally expressed as:

α(Q2) =
α0

1 − ∆α(Q2)
(1)

where α0 = α(Q2 = 0) � 1/137.036 is the fine structure constant. Whereas the leptonic
contributions are calculable to very high accuracy, the hadronic ones are more problematic
as they involve quark masses and hadronic physics at low momentum scales. The hadronic
contribution is traditionally determined from a dispersion integral over a parameterization of
the measured annihilation cross section of e+e−→ hadrons, supplemented with perturbative
QCD above resonances [2, 3]. The main difficulty of this approach comes from the integration
of experimental data in the region of hadronic resonances, which in turn gives the dominant
uncertainty on ∆α for positive (timelike) Q2. The effective QED coupling α(Q2) is an essential
ingredient for many precision physics predictions. Its uncertainty is still one of the dominant
ones in the electroweak fits constraining the Higgs mass [4]. There are also many evaluations
which are more theory-driven, extending the application of perturbative QCD down to 2 GeV
or so (see for example the references in [4]). An alternative approach was put forward to use
the Adler function [5] and perturbative QCD in the negative Q2 (spacelike) region [6], where
∆α is a smooth function.

Until now there have been only a few direct observations of the running of the QED cou-
pling [7,8,9,10]. Most of these analyses involve measurements of cross sections and their ratios
and obtain values of α(Q2) which are found to deviate from α0 or from the assumed value of
the coupling at some initial scale. Theoretical uncertainties on the predicted absolute cross
sections as well as experimental scale errors can hurt such determinations or reduce their sig-
nificance. The s-channel results from the TOPAZ [7] and the OPAL [8] experiments were based
on e+e−annihilations to leptonic final states. Far enough from the Z resonance these processes
are dominated by single photon exchange, although they substantially involve the full elec-
troweak theory. Large angle Bhabha scattering has been studied by the VENUS [9] and L3 [10]
experiments to measure the running in the spacelike region. In this case both s- and t-channel
γ-exchange diagrams are important and the effective QED coupling appears as a function of s
or t respectively. Moreover weak contributions of Z-exchange interference are also sizeable.

In this paper we measure the running of α in the spacelike region, by studying the angular
dependence of the small angle Bhabha scattering. The spectrum is modified by the running
coupling which appears as α2(t) and the square momentum transfer t is simply related to the
polar scattering angle. We use the small angular region accepted for the luminosity measure-
ment, which approximately corresponds to 2 ≤ −t ≤ 6 GeV2 at centre-of-mass energy about
the Z resonance peak. At such t scale the average ∆α is about 2%. The counting rate of small
angle Bhabha events is used to determine the integrated luminosity, so that we cannot do an
absolute measurement of α(t), rather we will look only at the shape. This is affected by the
expected variation of the coupling throughout the acceptance, which is about 0.5%, leading
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to an observable effect of about 1%. An interesting property of such low |t| region is that,
although the absolute ∆α value is dominated by the leptonic contributions, the variation of the
hadronic contribution is predicted to be three times faster, resulting in similar contributions to
the variation of the coupling. There has been only one previous attempt to test directly the
momentum transfer dependence of α in a way free of normalization errors by the L3 collabo-
ration [10]. To date there exists no direct experimental evidence for the hadronic contribution
to the running.

The small angle Bhabha scattering appears as an ideal place for a direct measurement of the
running of α(Q2) in a single experiment. This has been pointed out also recently [11]. Among
the advantages are the very high available statistics and the purity of the data sample. In
this work a crucial part has the very high precision in measuring the scattering angle which
was possible by the OPAL Silicon-Tungsten (SiW) luminometer [12]. Not less important is the
cleanliness of the measurement from a theoretical point of view. Small angle Bhabha scattering
is strongly dominated by single-photon t-channel exchange, while s-channel photon exchange
is practically negligible. It is currently exactly calculable up to the leading O(α2) terms in
the QED photonic corrections (herein indicated as O(α2L2), where L = ln(|t|/m2

e) − 1 is the
big logarithm). Many existing calculations were described in [13] and there were also widely
cross-checked mainly to reduce the theoretical error on the determination of the luminosity
at LEP1. Higher order terms are partially accounted through exponentiation. Many of these
calculations are available in the convenient form of Monte Carlo programs and have been also
extensively checked by the LEP experiments. There exists also a calculation accurate to the
subleading O(α2) terms [14]. Corrections for Z interference are very small and well known,
so that small angle Bhabha scattering is basically a pure QED process. A comparison of data
with such precise calculations can determine the value of the effective QED coupling in the
most precise way without relying on the correctness of the SU(2)×U(1) electroweak model.

The paper is organized in this way: in section 2 we explain the analysis method, the detector
and its Monte Carlo simulation is briefly described in section 3 and the event selection in section
4. The procedure to correct the data distributions is explained in section 5. The fit results
including only statistical errors are given in section 6, while the systematic errors are described
in detail in section 7. The theoretical uncertainties are discussed in section 8. The results are
finally given in section 9, and a conclusive summary in section 10.

2 Analysis method

The Bhabha differential cross section can be written in the following form for small scattering
angle:

dσ

dt
=

dσ(0)

dt

(
α(t)

α0

)2

(1 + ε) (1 + δγ) + δZ (2)

where:
dσ(0)

dt
=

4πα2
0

t2
(3)

is the Born term for t-channel single photon exchange, α0 is the fine structure constant, α(t)
is the effective coupling at the momentum transfer scale t. Here ε represents the radiative
corrections to the Born cross section, δγ the contribution of s-channel photon exchange and
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to an observable effect of about 1%. An interesting property of such low |t| region is that,
although the absolute ∆α value is dominated by the leptonic contributions, the variation of the
hadronic contribution is predicted to be three times faster, resulting in similar contributions to
the variation of the coupling. There has been only one previous attempt to test directly the
momentum transfer dependence of α in a way free of normalization errors by the L3 collabo-
ration [10]. To date there exists no direct experimental evidence for the hadronic contribution
to the running.

The small angle Bhabha scattering appears as an ideal place for a direct measurement of the
running of α(Q2) in a single experiment. This has been pointed out also recently [11]. Among
the advantages are the very high available statistics and the purity of the data sample. In
this work a crucial part has the very high precision in measuring the scattering angle which
was possible by the OPAL Silicon-Tungsten (SiW) luminometer [12]. Not less important is the
cleanliness of the measurement from a theoretical point of view. Small angle Bhabha scattering
is strongly dominated by single-photon t-channel exchange, while s-channel photon exchange
is practically negligible. It is currently exactly calculable up to the leading O(α2) terms in
the QED photonic corrections (herein indicated as O(α2L2), where L = ln(|t|/m2

e) − 1 is the
big logarithm). Many existing calculations were described in [13] and there were also widely
cross-checked mainly to reduce the theoretical error on the determination of the luminosity
at LEP1. Higher order terms are partially accounted through exponentiation. Many of these
calculations are available in the convenient form of Monte Carlo programs and have been also
extensively checked by the LEP experiments. There exists also a calculation accurate to the
subleading O(α2) terms [14]. Corrections for Z interference are very small and well known,
so that small angle Bhabha scattering is basically a pure QED process. A comparison of data
with such precise calculations can determine the value of the effective QED coupling in the
most precise way without relying on the correctness of the SU(2)×U(1) electroweak model.

The paper is organized in this way: in section 2 we explain the analysis method, the detector
and its Monte Carlo simulation is briefly described in section 3 and the event selection in section
4. The procedure to correct the data distributions is explained in section 5. The fit results
including only statistical errors are given in section 6, while the systematic errors are described
in detail in section 7. The theoretical uncertainties are discussed in section 8. The results are
finally given in section 9, and a conclusive summary in section 10.

2 Analysis method

The Bhabha differential cross section can be written in the following form for small scattering
angle:

dσ

dt
=

dσ(0)

dt

(
α(t)

α0

)2

(1 + ε) (1 + δγ) + δZ (2)

where:
dσ(0)

dt
=

4πα2
0

t2
(3)

is the Born term for t-channel single photon exchange, α0 is the fine structure constant, α(t)
is the effective coupling at the momentum transfer scale t. Here ε represents the radiative
corrections to the Born cross section, δγ the contribution of s-channel photon exchange and
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to an observable effect of about 1%. An interesting property of such low |t| region is that,
although the absolute ∆α value is dominated by the leptonic contributions, the variation of the
hadronic contribution is predicted to be three times faster, resulting in similar contributions to
the variation of the coupling. There has been only one previous attempt to test directly the
momentum transfer dependence of α in a way free of normalization errors by the L3 collabo-
ration [10]. To date there exists no direct experimental evidence for the hadronic contribution
to the running.

The small angle Bhabha scattering appears as an ideal place for a direct measurement of the
running of α(Q2) in a single experiment. This has been pointed out also recently [11]. Among
the advantages are the very high available statistics and the purity of the data sample. In
this work a crucial part has the very high precision in measuring the scattering angle which
was possible by the OPAL Silicon-Tungsten (SiW) luminometer [12]. Not less important is the
cleanliness of the measurement from a theoretical point of view. Small angle Bhabha scattering
is strongly dominated by single-photon t-channel exchange, while s-channel photon exchange
is practically negligible. It is currently exactly calculable up to the leading O(α2) terms in
the QED photonic corrections (herein indicated as O(α2L2), where L = ln(|t|/m2

e) − 1 is the
big logarithm). Many existing calculations were described in [13] and there were also widely
cross-checked mainly to reduce the theoretical error on the determination of the luminosity
at LEP1. Higher order terms are partially accounted through exponentiation. Many of these
calculations are available in the convenient form of Monte Carlo programs and have been also
extensively checked by the LEP experiments. There exists also a calculation accurate to the
subleading O(α2) terms [14]. Corrections for Z interference are very small and well known,
so that small angle Bhabha scattering is basically a pure QED process. A comparison of data
with such precise calculations can determine the value of the effective QED coupling in the
most precise way without relying on the correctness of the SU(2)×U(1) electroweak model.

The paper is organized in this way: in section 2 we explain the analysis method, the detector
and its Monte Carlo simulation is briefly described in section 3 and the event selection in section
4. The procedure to correct the data distributions is explained in section 5. The fit results
including only statistical errors are given in section 6, while the systematic errors are described
in detail in section 7. The theoretical uncertainties are discussed in section 8. The results are
finally given in section 9, and a conclusive summary in section 10.

2 Analysis method

The Bhabha differential cross section can be written in the following form for small scattering
angle:

dσ

dt
=

dσ(0)

dt

(
α(t)

α0

)2

(1 + ε) (1 + δγ) + δZ (2)

where:
dσ(0)

dt
=

4πα2
0

t2
(3)

is the Born term for t-channel single photon exchange, α0 is the fine structure constant, α(t)
is the effective coupling at the momentum transfer scale t. Here ε represents the radiative
corrections to the Born cross section, δγ the contribution of s-channel photon exchange and
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δZ the contribution of Z exchange. The contributions of δγ and δZ are much smaller than
those of ε and the vacuum polarization. Therefore with a precise knowledge of the radiative
corrections (ε term) one can determine the effective coupling α(t) by measuring the differential
cross section. Actually the form of equation (2) is an approximation as the δγ term is not really
factorized with the effective coupling α2(t). In fact the s-channel amplitude has coupling α(s).
The practical validity is a consequence of the smallness of the δγ term, which could even be
neglected.

The counting rate of Bhabha events in the SiW luminometers is used to determine the integrated
luminosity, so that we cannot do an absolute measurement of α(t), unless an independent
determination of the luminosity were available. Instead, the structure of the cross section as
written in (2) easily allows to determine the variation of α(t) over the accessible t range. In
fact the vacuum polarization gives the term (α(t)/α0)

2, factorized with the dominant piece of
the cross section. At the leading order the variable t is simply related to the scattering angle:

t = −s
1 − cos θ

2
≈ −sθ2

4
(4)

Photon radiation (in particolar Initial State Radiation) smears this correspondence. The event
selection that we will be using, described in section 4, has been carefully studied to reduce
the impact of radiative events. In particular the energy cuts and the acollinearity cut are very
effective. As a result the event sample is strongly dominated by two cluster configurations,
with almost full energy back-to-back scattered e+ and e−. For such selection the relation (4) is
well approximated. The polar scattering angle θ is measured from the radial position R of the
scattered e+ and e− at reference planes located within the SiW luminometers, at a distance z
from the interaction point:

θ = atan(R/z) (5)

We use the BHLUMI [15] Monte Carlo generator for small angle Bhabha scattering. It is
a multiphoton exponentiated generator accurate up to the leading logarithmic O(α2) terms.
Higher order photonic contributions are partially included by virtue of the exponentiation.
The generated events contain always the scattered electron and positron plus an arbitrary
number of (non-collinear) photons. Small contributions from s-channel photon exchange and
Z interference are also included. Corrections due to vacuum polarization are implemented
with a few choices for the parameterization of the hadronic term [2, 16]. We used the option
to generate weighted events, such that we could access all the available intermediate weights
which compose the final complete cross section event by event. In particular we could also
modify the parameterization of the vacuum polarization or set α(t) ≡ α0 to assume a fixed
coupling α0.

We will compare the radial distribution of the data (and hence the t-spectrum) with the predic-
tions of the BHLUMI Monte Carlo, to determine the running of α within the accepted region.
We followed two equivalent methods:

• We calculated the ratios of data and Monte Carlo events in each bin. The Monte Carlo
was modified by setting the coupling to the constant value α(t) ≡ α0. Then:

R(t) =
Ndata

NMC
∝
(

1

1 − ∆α(t)

)2

(6)
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δZ the contribution of Z exchange. The contributions of δγ and δZ are much smaller than
those of ε and the vacuum polarization. Therefore with a precise knowledge of the radiative
corrections (ε term) one can determine the effective coupling α(t) by measuring the differential
cross section. Actually the form of equation (2) is an approximation as the δγ term is not really
factorized with the effective coupling α2(t). In fact the s-channel amplitude has coupling α(s).
The practical validity is a consequence of the smallness of the δγ term, which could even be
neglected.

The counting rate of Bhabha events in the SiW luminometers is used to determine the integrated
luminosity, so that we cannot do an absolute measurement of α(t), unless an independent
determination of the luminosity were available. Instead, the structure of the cross section as
written in (2) easily allows to determine the variation of α(t) over the accessible t range. In
fact the vacuum polarization gives the term (α(t)/α0)

2, factorized with the dominant piece of
the cross section. At the leading order the variable t is simply related to the scattering angle:

t = −s
1 − cos θ

2
≈ −sθ2

4
(4)

Photon radiation (in particolar Initial State Radiation) smears this correspondence. The event
selection that we will be using, described in section 4, has been carefully studied to reduce
the impact of radiative events. In particular the energy cuts and the acollinearity cut are very
effective. As a result the event sample is strongly dominated by two cluster configurations,
with almost full energy back-to-back scattered e+ and e−. For such selection the relation (4) is
well approximated. The polar scattering angle θ is measured from the radial position R of the
scattered e+ and e− at reference planes located within the SiW luminometers, at a distance z
from the interaction point:

θ = atan(R/z) (5)

We use the BHLUMI [15] Monte Carlo generator for small angle Bhabha scattering. It is
a multiphoton exponentiated generator accurate up to the leading logarithmic O(α2) terms.
Higher order photonic contributions are partially included by virtue of the exponentiation.
The generated events contain always the scattered electron and positron plus an arbitrary
number of (non-collinear) photons. Small contributions from s-channel photon exchange and
Z interference are also included. Corrections due to vacuum polarization are implemented
with a few choices for the parameterization of the hadronic term [2, 16]. We used the option
to generate weighted events, such that we could access all the available intermediate weights
which compose the final complete cross section event by event. In particular we could also
modify the parameterization of the vacuum polarization or set α(t) ≡ α0 to assume a fixed
coupling α0.

We will compare the radial distribution of the data (and hence the t-spectrum) with the predic-
tions of the BHLUMI Monte Carlo, to determine the running of α within the accepted region.
We followed two equivalent methods:

• We calculated the ratios of data and Monte Carlo events in each bin. The Monte Carlo
was modified by setting the coupling to the constant value α(t) ≡ α0. Then:

R(t) =
Ndata

NMC
∝
(

1

1 − ∆α(t)

)2

(6)
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δZ the contribution of Z exchange. The contributions of δγ and δZ are much smaller than
those of ε and the vacuum polarization. Therefore with a precise knowledge of the radiative
corrections (ε term) one can determine the effective coupling α(t) by measuring the differential
cross section. Actually the form of equation (2) is an approximation as the δγ term is not really
factorized with the effective coupling α2(t). In fact the s-channel amplitude has coupling α(s).
The practical validity is a consequence of the smallness of the δγ term, which could even be
neglected.

The counting rate of Bhabha events in the SiW luminometers is used to determine the integrated
luminosity, so that we cannot do an absolute measurement of α(t), unless an independent
determination of the luminosity were available. Instead, the structure of the cross section as
written in (2) easily allows to determine the variation of α(t) over the accessible t range. In
fact the vacuum polarization gives the term (α(t)/α0)

2, factorized with the dominant piece of
the cross section. At the leading order the variable t is simply related to the scattering angle:

t = −s
1 − cos θ

2
≈ −sθ2

4
(4)

Photon radiation (in particolar Initial State Radiation) smears this correspondence. The event
selection that we will be using, described in section 4, has been carefully studied to reduce
the impact of radiative events. In particular the energy cuts and the acollinearity cut are very
effective. As a result the event sample is strongly dominated by two cluster configurations,
with almost full energy back-to-back scattered e+ and e−. For such selection the relation (4) is
well approximated. The polar scattering angle θ is measured from the radial position R of the
scattered e+ and e− at reference planes located within the SiW luminometers, at a distance z
from the interaction point:

θ = atan(R/z) (5)

We use the BHLUMI [15] Monte Carlo generator for small angle Bhabha scattering. It is
a multiphoton exponentiated generator accurate up to the leading logarithmic O(α2) terms.
Higher order photonic contributions are partially included by virtue of the exponentiation.
The generated events contain always the scattered electron and positron plus an arbitrary
number of (non-collinear) photons. Small contributions from s-channel photon exchange and
Z interference are also included. Corrections due to vacuum polarization are implemented
with a few choices for the parameterization of the hadronic term [2, 16]. We used the option
to generate weighted events, such that we could access all the available intermediate weights
which compose the final complete cross section event by event. In particular we could also
modify the parameterization of the vacuum polarization or set α(t) ≡ α0 to assume a fixed
coupling α0.

We will compare the radial distribution of the data (and hence the t-spectrum) with the predic-
tions of the BHLUMI Monte Carlo, to determine the running of α within the accepted region.
We followed two equivalent methods:

• We calculated the ratios of data and Monte Carlo events in each bin. The Monte Carlo
was modified by setting the coupling to the constant value α(t) ≡ α0. Then:

R(t) =
Ndata

NMC
∝
(

1

1 − ∆α(t)

)2

(6)
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δZ the contribution of Z exchange. The contributions of δγ and δZ are much smaller than
those of ε and the vacuum polarization. Therefore with a precise knowledge of the radiative
corrections (ε term) one can determine the effective coupling α(t) by measuring the differential
cross section. Actually the form of equation (2) is an approximation as the δγ term is not really
factorized with the effective coupling α2(t). In fact the s-channel amplitude has coupling α(s).
The practical validity is a consequence of the smallness of the δγ term, which could even be
neglected.

The counting rate of Bhabha events in the SiW luminometers is used to determine the integrated
luminosity, so that we cannot do an absolute measurement of α(t), unless an independent
determination of the luminosity were available. Instead, the structure of the cross section as
written in (2) easily allows to determine the variation of α(t) over the accessible t range. In
fact the vacuum polarization gives the term (α(t)/α0)

2, factorized with the dominant piece of
the cross section. At the leading order the variable t is simply related to the scattering angle:

t = −s
1 − cos θ

2
≈ −sθ2

4
(4)

Photon radiation (in particolar Initial State Radiation) smears this correspondence. The event
selection that we will be using, described in section 4, has been carefully studied to reduce
the impact of radiative events. In particular the energy cuts and the acollinearity cut are very
effective. As a result the event sample is strongly dominated by two cluster configurations,
with almost full energy back-to-back scattered e+ and e−. For such selection the relation (4) is
well approximated. The polar scattering angle θ is measured from the radial position R of the
scattered e+ and e− at reference planes located within the SiW luminometers, at a distance z
from the interaction point:

θ = atan(R/z) (5)

We use the BHLUMI [15] Monte Carlo generator for small angle Bhabha scattering. It is
a multiphoton exponentiated generator accurate up to the leading logarithmic O(α2) terms.
Higher order photonic contributions are partially included by virtue of the exponentiation.
The generated events contain always the scattered electron and positron plus an arbitrary
number of (non-collinear) photons. Small contributions from s-channel photon exchange and
Z interference are also included. Corrections due to vacuum polarization are implemented
with a few choices for the parameterization of the hadronic term [2, 16]. We used the option
to generate weighted events, such that we could access all the available intermediate weights
which compose the final complete cross section event by event. In particular we could also
modify the parameterization of the vacuum polarization or set α(t) ≡ α0 to assume a fixed
coupling α0.

We will compare the radial distribution of the data (and hence the t-spectrum) with the predic-
tions of the BHLUMI Monte Carlo, to determine the running of α within the accepted region.
We followed two equivalent methods:

• We calculated the ratios of data and Monte Carlo events in each bin. The Monte Carlo
was modified by setting the coupling to the constant value α(t) ≡ α0. Then:

R(t) =
Ndata

NMC
∝
(

1

1 − ∆α(t)

)2

(6)
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The dominant dependence of ∆α(t) expected from theory is logarithmic. However within
the kinematic region of this analysis it may be approximated with a straight line. There
is no statistical sensitivity to deviations from a linear behaviour of the running. So we
fitted the ratios as:

R(t) = a + b|t| (7)

The b slope represents the full observable effect of the running of α(t), both the leptonic
and the hadronic component. It is related to the variation of the coupling by:

b = 2
∆α(t2) − ∆α(t1)

|t2| − |t1| =
2

|t2| − |t1|
α−1(t2) − α−1(t1)

α−1
0

(8)

where t1 and t2 correspond to the acceptance limits.

• The hadronic contribution to the vacuum polarization is included in the Monte Carlo
with the parameterization [16] of the form :

∆αhad = A + B ln (1 + C |t|) (9)

The coefficients A, B and C have different values in intervals of |t| which depend on the
detailed method of extraction of the parameterization. We fixed A and C to their values
at the average |t| of our data sample, leaving B as a free parameter. In this case the
leptonic contribution to the vacuum polarization ∆αlep was kept at the calculated value.

The effective slope defined in (7) is slightly variable for the different data samples, as their
average centre-of-mass energy varies. To combine the results we can practically redefine b in
(7) as:

b = b∗
∆t∗

∆t
(10)

where ∆t is the actual energy-dependent t range, ∆t∗ corresponds to a reference centre-of-mass
energy

√
s = 91.1 GeV, and then fit for b∗. With the acceptance cuts specified in section 4 the

reference t range is: t∗1 = −1.78 GeV2, t∗2 = −5.96 GeV2, ∆t∗ = |t∗2| − |t∗1| = 4.18 GeV2.

3 Detector, data samples and Monte Carlo simulation

The OPAL detector and trigger have been described in detail elsewhere [17]. In particular this
analysis is based on the silicon-tungsten luminometer (SiW), which was used to determine the
luminosity from the counting rate of accepted Bhabha events, starting from 1993. The SiW was
designed to improve the precision of the luminosity measurement to better than 1 per mille.
In fact it achieved a fractional experimental systematic error of 3.4 × 10−4. The detector and
the luminosity measurement are extensively described in [12]. Here we only review briefly the
detector aspects relevant for this analysis.

The OPAL SiW luminometer consisted of 2 identical cylindrical calorimeters, encircling the
beam pipe simmetrically at about ±2.5 m from the interaction point. Each calorimeter is a
stack of 19 silicon layers interleaved with 18 tungsten plates, with a sensitive depth of 14 cm,
representing 22 radiation lenghts (X0). The first 14 tungsten plates are each 1 X0 thick, while
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The dominant dependence of ∆α(t) expected from theory is logarithmic. However within
the kinematic region of this analysis it may be approximated with a straight line. There
is no statistical sensitivity to deviations from a linear behaviour of the running. So we
fitted the ratios as:

R(t) = a + b|t| (7)

The b slope represents the full observable effect of the running of α(t), both the leptonic
and the hadronic component. It is related to the variation of the coupling by:

b = 2
∆α(t2) − ∆α(t1)

|t2| − |t1| =
2

|t2| − |t1|
α−1(t2) − α−1(t1)

α−1
0

(8)

where t1 and t2 correspond to the acceptance limits.

• The hadronic contribution to the vacuum polarization is included in the Monte Carlo
with the parameterization [16] of the form :

∆αhad = A + B ln (1 + C |t|) (9)

The coefficients A, B and C have different values in intervals of |t| which depend on the
detailed method of extraction of the parameterization. We fixed A and C to their values
at the average |t| of our data sample, leaving B as a free parameter. In this case the
leptonic contribution to the vacuum polarization ∆αlep was kept at the calculated value.

The effective slope defined in (7) is slightly variable for the different data samples, as their
average centre-of-mass energy varies. To combine the results we can practically redefine b in
(7) as:

b = b∗
∆t∗

∆t
(10)

where ∆t is the actual energy-dependent t range, ∆t∗ corresponds to a reference centre-of-mass
energy

√
s = 91.1 GeV, and then fit for b∗. With the acceptance cuts specified in section 4 the

reference t range is: t∗1 = −1.78 GeV2, t∗2 = −5.96 GeV2, ∆t∗ = |t∗2| − |t∗1| = 4.18 GeV2.

3 Detector, data samples and Monte Carlo simulation

The OPAL detector and trigger have been described in detail elsewhere [17]. In particular this
analysis is based on the silicon-tungsten luminometer (SiW), which was used to determine the
luminosity from the counting rate of accepted Bhabha events, starting from 1993. The SiW was
designed to improve the precision of the luminosity measurement to better than 1 per mille.
In fact it achieved a fractional experimental systematic error of 3.4 × 10−4. The detector and
the luminosity measurement are extensively described in [12]. Here we only review briefly the
detector aspects relevant for this analysis.

The OPAL SiW luminometer consisted of 2 identical cylindrical calorimeters, encircling the
beam pipe simmetrically at about ±2.5 m from the interaction point. Each calorimeter is a
stack of 19 silicon layers interleaved with 18 tungsten plates, with a sensitive depth of 14 cm,
representing 22 radiation lenghts (X0). The first 14 tungsten plates are each 1 X0 thick, while
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the last 4 are each 2 X0 thick. The sensitive area fully covers radii between 6.2 and 14.2 cm
from the beam axis. Each detector layer is segmented with R − φ geometry in a 32 × 32
pad array. The pad size is 2.5 mm radially and 11.25 degrees in azimuth. In total the whole
luminometer had 38,912 readout channels corresponding to the individual silicon pads. The
calibration was studied with electrical pulses generated both on the readout chips and on the
front-end boards, as well as with ionization signals generated in the silicon using test beams
and laboratory sources. Overall pad-to-pad gain variations were within 1%.

We use the data samples collected in 1993-95 at energies close to the Z resonance peak. In
total they amount to 101 pb−1 of OPAL data.

For the LEP2 data-taking started in 1996 the detector configuration changed, with the instal-
lation of tungsten shields designed to protect the inner tracking detectors from synchrotron
radiation. These introduced about 50 radiation lengths of material in front of the calorimeters
between 26 and 33 mrad from the beam axis, thus reducing the useful acceptance of the detec-
tor at the lower polar angle limit. Moreover the new fiducial acceptance cut fell right in the
middle of the previous acceptance, where the preshowering material was maximum. For these
reasons we have limited this analysis to the LEP1 data samples.

The OPAL SiW detector simulation does not rely on a detailed physical simulation of electro-
magnetic showers in the detector. Instead it is based on a parameterization of the detector
response obtained from the data [12]. This approach gives a much more reliable description
of the tails of the detector response functions, which are primarily due to extreme fluctuations
in shower development, than we could obtain using any existing program which attempts to
simulate the basic interactions of electrons and photons in matter. The measured LEP beam
size and divergence, as well as the measured offset and tilt of the beam with respect to the
calorimeters are also incorporated in this simulation. The Monte Carlo simulation is used to
correct the acceptance for the effects of the detector energy response, the coordinate resolution
and LEP beam parameters. The data are divided in 9 subsamples according to the average
centre-of-mass energy and the values of the beam parameters, which slightly varied. For each
subsample we generated an independent sample of BHLUMI events subjected to detector sim-
ulation with corresponding setting of the parameters. The statistics were always at least 10
times those of the corresponding data set.

There are other acceptance corrections which are not accounted by the Monte Carlo simulation,
but rather applied directly to data. These include the trigger efficiency, accidental background,
detector metrology and most importantly biases in the reconstructed radial coordinate. The
latter is crucial for this analysis and will be discussed in section 5.

4 Event selection

The event selection criteria can be classified into isolation cuts, which isolate a sample of pure
Bhabha scattering events from the off-momentum background, and acceptance defining, or
definition cuts. The isolation cuts are used to define a fiducial set of events which lie within the
good acceptance of both calorimeters and are essentially background free. The definition cuts
then select subsets of events from within the fiducial sample. Showers generated by incident
electrons and photons are recognized as clusters in the calorimeters and their energies and
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the last 4 are each 2 X0 thick. The sensitive area fully covers radii between 6.2 and 14.2 cm
from the beam axis. Each detector layer is segmented with R − φ geometry in a 32 × 32
pad array. The pad size is 2.5 mm radially and 11.25 degrees in azimuth. In total the whole
luminometer had 38,912 readout channels corresponding to the individual silicon pads. The
calibration was studied with electrical pulses generated both on the readout chips and on the
front-end boards, as well as with ionization signals generated in the silicon using test beams
and laboratory sources. Overall pad-to-pad gain variations were within 1%.

We use the data samples collected in 1993-95 at energies close to the Z resonance peak. In
total they amount to 101 pb−1 of OPAL data.

For the LEP2 data-taking started in 1996 the detector configuration changed, with the instal-
lation of tungsten shields designed to protect the inner tracking detectors from synchrotron
radiation. These introduced about 50 radiation lengths of material in front of the calorimeters
between 26 and 33 mrad from the beam axis, thus reducing the useful acceptance of the detec-
tor at the lower polar angle limit. Moreover the new fiducial acceptance cut fell right in the
middle of the previous acceptance, where the preshowering material was maximum. For these
reasons we have limited this analysis to the LEP1 data samples.

The OPAL SiW detector simulation does not rely on a detailed physical simulation of electro-
magnetic showers in the detector. Instead it is based on a parameterization of the detector
response obtained from the data [12]. This approach gives a much more reliable description
of the tails of the detector response functions, which are primarily due to extreme fluctuations
in shower development, than we could obtain using any existing program which attempts to
simulate the basic interactions of electrons and photons in matter. The measured LEP beam
size and divergence, as well as the measured offset and tilt of the beam with respect to the
calorimeters are also incorporated in this simulation. The Monte Carlo simulation is used to
correct the acceptance for the effects of the detector energy response, the coordinate resolution
and LEP beam parameters. The data are divided in 9 subsamples according to the average
centre-of-mass energy and the values of the beam parameters, which slightly varied. For each
subsample we generated an independent sample of BHLUMI events subjected to detector sim-
ulation with corresponding setting of the parameters. The statistics were always at least 10
times those of the corresponding data set.

There are other acceptance corrections which are not accounted by the Monte Carlo simulation,
but rather applied directly to data. These include the trigger efficiency, accidental background,
detector metrology and most importantly biases in the reconstructed radial coordinate. The
latter is crucial for this analysis and will be discussed in section 5.

4 Event selection

The event selection criteria can be classified into isolation cuts, which isolate a sample of pure
Bhabha scattering events from the off-momentum background, and acceptance defining, or
definition cuts. The isolation cuts are used to define a fiducial set of events which lie within the
good acceptance of both calorimeters and are essentially background free. The definition cuts
then select subsets of events from within the fiducial sample. Showers generated by incident
electrons and photons are recognized as clusters in the calorimeters and their energies and
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coordinates determined. The fine segmentation of the detectors allows incident particles with
separations greater than 1 cm to be individually reconstructed with good efficiency.

The coordinate system used throughout this paper is cylindrical, with the z-axis pointing along
the direction of the electron beam, passing through the centers of the two calorimeter bores.
The origin of the azimuthal coordinate, φ, is in the horizontal plane, towards the inside of the
LEP ring. All radial coordinate measurements are projected to reference planes at a distance
of ±246.0225 cm from the nominal intersection point. These reference planes correspond to the
nominal position of the silicon layers 7 X0 deep in the two calorimeters.

The isolation cuts consist of the following requirements, imposed on (RR,φR) and (RL,φL),
the radial and azimuthal coordinates of the highest energy cluster associated with the Bhabha
event, in each of the right and left calorimeters, and on ER and EL, the total fiducial energy
deposited by the Bhabha event in each of the two calorimeters, explicitly including the energy
of radiated photons:

• Loose radial cut, right (left) 6.7 cm < RR < 13.7 cm
(6.7 cm < RL < 13.7 cm)

• Acoplanarity cut ||φR − φL| − π| < 200 mrad

• Acollinearity cut |RR − RL| < 2.5 cm

• Minimum energy cut, right (left) ER > 0.5 · Ebeam

(EL > 0.5 · Ebeam)

• Average energy cut (ER + EL) /2 > 0.75 · Ebeam

Note that by defining the energy cuts relative to the beam energy, Ebeam, the selection efficiency
is largely independent of

√
s.

The acollinearity cut (which corresponds to approximately 10.4 mrad) is introduced in order
to ensure that the acceptance for single radiative events is effectively determined geometrically
and not by the explicit energy cuts.

The isolation cuts accept events in which the radial coordinate, in both the Right and the
Left side, is more than two pad width (0.5 cm) away from the edge of the sensitive area of
the detector. The definition cuts, based solely on the reconstructed radial positions (RR, RL)
of the two highest energy clusters, then require the radial position on either side to be within
two extra pads towards the inside of the acceptance. For the correction procedure explained in
section 5 we refer to one specified silicon layer, which can be varied with some freedom. The
Right and Left definition cuts are chosen so as to correspond closely to radial pad boundaries
in the same detector layer. When the chosen layer is the reference one at 7 X0, the definition
cuts are:

• Right side 7.2 cm < RR < 13.2 cm

• Left side 7.2 cm < RL < 13.2 cm

Expressed in terms of polar angles, these cuts correspond to 29.257 and 53.602 mrad. When
alternative layers are chosen the acceptance cuts are projected to the layer at 7 X0. For
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example when using the layer at 4 X0, Rmin = 7.25842 cm and Rmax = 13.30710 cm. The
radial distributions after the isolation cuts are shown in Fig. 1 for the complete LEP1 statistics
and compared to Monte Carlo distributions normalized to the same number of events. The
agreement is very good, except in the central part where effects of the preshowering material
are expected. Correction of the radial distributions is one of the main issues and is described
in the next section.

5 Radial coordinate correction

The reconstruction of the radial coordinate is the key element to control the systematic errors
to the desired accuracy. It is explained in detail in [12]. The last step is the so-called anchor-
ing. This procedure was meant to correct any residual bias which could remain on the final
reconstructed radius R on either side of the calorimeter at the pad boundaries defining the
edges of the acceptance. For the luminosity measurement the correction affected only the total
acceptance. Here we want to bin the radial distribution to determine its shape, so we need to
correct for radial biases occuring at any bin edge.

The reconstruction method respects the simmetry condition that a shower which deposits equal
energies on two adjacent pads in the reference layer at 7 X0 has to be reconstructed in the mean
exactly at the boundary between the pads. In reality, due to the R − φ geometry of the pads,
the true position of such showers is at a smaller radius than the pad boundary. This is termed
the pad boundary bias and depends on the lateral shower spread. The pad boundary bias has
been measured in a test beam.

The test beam employed a SiW calorimeter module of 3 azimuthal wedges fully equipped in
depth, and a four-plane, double-sided Si micro-strip telescope with a resolution of better than
3 µm for individual tracks. The geometry of the calorimeter pads with respect to the telescope
was determined using a beam of 100 GeV muons. The muon beam was alternated with one of
45 GeV electrons.

As the radial position of the incoming particles is scanned across a radial pad boundary in a
single layer, the probability for observing the largest pad signal above or below this boundary
shifts rapidly, giving an image of the pad boundary as shown in Fig. 2. These plots are obtained
from OPAL data taken in 1993-94 and refer to three radial pad boundaries in layer 4 X0 of the
Right calorimeter. The pad boundary images are modelled with an error function (a gaussian
convoluted with a step function), where the gaussian width σ1 is related to the resolution at the
boundary and the difference between the nominal and the apparent boundary position, defined
by the half-height of the step, is called the radial offset Roff .

At the test beam the difference in Roff obtained by changing from electron to muon beam was
the measured pad boundary bias, which was found to follow a linear dependence increasing
with σ. The fitted linear parameterization was assigned an error of 2 µm. During the OPAL
running the radial position is determined by the SiW calorimeter alone, so that the width
observed from the pad boundary images is an apparent one. The relation between the true σ
and the apparent σa was also measured at the test beam and is used to convert the observed σa

1In [12] the variable w was defined differing by a numerical factor from the width: w =
√

2 σ.
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example when using the layer at 4 X0, Rmin = 7.25842 cm and Rmax = 13.30710 cm. The
radial distributions after the isolation cuts are shown in Fig. 1 for the complete LEP1 statistics
and compared to Monte Carlo distributions normalized to the same number of events. The
agreement is very good, except in the central part where effects of the preshowering material
are expected. Correction of the radial distributions is one of the main issues and is described
in the next section.

5 Radial coordinate correction

The reconstruction of the radial coordinate is the key element to control the systematic errors
to the desired accuracy. It is explained in detail in [12]. The last step is the so-called anchor-
ing. This procedure was meant to correct any residual bias which could remain on the final
reconstructed radius R on either side of the calorimeter at the pad boundaries defining the
edges of the acceptance. For the luminosity measurement the correction affected only the total
acceptance. Here we want to bin the radial distribution to determine its shape, so we need to
correct for radial biases occuring at any bin edge.

The reconstruction method respects the simmetry condition that a shower which deposits equal
energies on two adjacent pads in the reference layer at 7 X0 has to be reconstructed in the mean
exactly at the boundary between the pads. In reality, due to the R − φ geometry of the pads,
the true position of such showers is at a smaller radius than the pad boundary. This is termed
the pad boundary bias and depends on the lateral shower spread. The pad boundary bias has
been measured in a test beam.

The test beam employed a SiW calorimeter module of 3 azimuthal wedges fully equipped in
depth, and a four-plane, double-sided Si micro-strip telescope with a resolution of better than
3 µm for individual tracks. The geometry of the calorimeter pads with respect to the telescope
was determined using a beam of 100 GeV muons. The muon beam was alternated with one of
45 GeV electrons.

As the radial position of the incoming particles is scanned across a radial pad boundary in a
single layer, the probability for observing the largest pad signal above or below this boundary
shifts rapidly, giving an image of the pad boundary as shown in Fig. 2. These plots are obtained
from OPAL data taken in 1993-94 and refer to three radial pad boundaries in layer 4 X0 of the
Right calorimeter. The pad boundary images are modelled with an error function (a gaussian
convoluted with a step function), where the gaussian width σ1 is related to the resolution at the
boundary and the difference between the nominal and the apparent boundary position, defined
by the half-height of the step, is called the radial offset Roff .

At the test beam the difference in Roff obtained by changing from electron to muon beam was
the measured pad boundary bias, which was found to follow a linear dependence increasing
with σ. The fitted linear parameterization was assigned an error of 2 µm. During the OPAL
running the radial position is determined by the SiW calorimeter alone, so that the width
observed from the pad boundary images is an apparent one. The relation between the true σ
and the apparent σa was also measured at the test beam and is used to convert the observed σa

1In [12] the variable w was defined differing by a numerical factor from the width: w =
√

2 σ.
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to the true σ. The uncertainty on the conversion factor from σa to σ has been estimated from
the difference between the test beam with no additional material and with 0.84 X0 of material
in front of the detector.

In OPAL data Roff measures the shift of the observed pad boundary image from the nominal
position of the pad boundary. Such shifts can be produced by a large number of causes: pad
gain fluctuations, metrology shifts, detector malfunctions, resolution effects and preshowering.
The pad boundary bias is determined by converting the apparent σa to the true σ and then
using the test beam results to find the corresponding geometric bias. Fig. 2 shows that a
gaussian resolution does not perfectly describe the tails of the distribution. To the extent
that the pad boundary image maintains an odd symmetry about the apparent pad boundary,
its non-gaussian behaviour does not affect the determination of Roff as can be seen from the
close agreement of the data points and the fitted curve near the pad boundary. We have also
considered a model in which the apparent pad boundary is taken as the median of the observed
resolution function. The difference between the two models is assigned as a systematic error
of the fit method, when it is larger than the fit statistical error, otherwise the latter is kept as
estimate. A further difference of the test beam with respect to the OPAL data is that it was
carried out at a radial position close to the inner acceptance cut. The geometrical bias due to
R − φ pads is expected to scale as 1/R, thus decreasing at a greater radius of pad curvature.
Therefore we have scaled in this way the bias estimated by using the test beam results, but
assign an additional systematic error equal to 50% of the expected bias to account for possible
deviations from this behaviour.

The total net bias (also called anchor) δR on the position of a pad boundary is given by:

δR = Roff + δRRφ + δRres (11)

where Roff is the coordinate offset which may have positive or negative sign, δRRφ is the
pad boundary bias, always positive and δRres is a small (positive) additional bias due to the
resolution flow. The latter results from the steeply falling radial resolution and can be thought
as a second-order effect.

From Fig. 2 one can see that the width is similar at the inner and outer radius, while it is
considerably greater at the central radius. The offset Roff is found very small at the inner
edge while it increases to ≈ 10 − 20 µm at the central and the outer radius. Among other
effects, the observed Roff is affected by fluctuations in the pad gain. We have checked these
effects directly on data, by studying Roff as a function of the 32 azimuthal divisions of the
calorimeters. We assign the size of the azimuthal variations, (Roff )RMS/

√
32, as a systematic

error in the anchors, due to pad gain vaiations.

The anchors determined from 1993-94 data for the layers at 4 X0 and all the pad boundaries
used in the analysis are shown in Fig. 3. A similar trend is visible in the two sides, in particular
the rise of the anchor from about zero at the inner edge to 20 − 25 µm around R = 9 cm.
The inner error bars are the statistical errors in the fit of the pad boundary images. The full
error bars include in quadrature the systematic errors from: fit method, pad gain variations, σa

conversion, test beam parameterization and the assumed 1/R scaling of the pad boundary bias.
The anchors determined from 1995 data have similar features although with lower statistics.

The anchors have been determined separately for 1993-94 and 1995 data, because the amount
of preshowering material was different in the two sub-samples. A clear relation with the amount
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