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1 Introduction

The electromagnetic coupling constant is a basic parameter of the Standard Model, known to
4 × 10−9 [1]. In QED the coupling becomes effective or running with the scale of momentum
transfer due to vacuum polarization. This is due to virtual lepton or quark loops. Their
contribution increases the effective electric charge at increasing momentum transfer. This can
be understood as an effect of screening of a bare electric charge which is probed at smaller and
smaller distance. The effective QED coupling is generally expressed as:

α(Q2) =
α0

1 − ∆α(Q2)
(1)

where α0 = α(Q2 = 0) � 1/137.036 is the fine structure constant. Whereas the leptonic
contributions are calculable to very high accuracy, the hadronic ones are more problematic
as they involve quark masses and hadronic physics at low momentum scales. The hadronic
contribution is traditionally determined from a dispersion integral over a parameterization of
the measured annihilation cross section of e+e−→ hadrons, supplemented with perturbative
QCD above resonances [2, 3]. The main difficulty of this approach comes from the integration
of experimental data in the region of hadronic resonances, which in turn gives the dominant
uncertainty on ∆α for positive (timelike) Q2. The effective QED coupling α(Q2) is an essential
ingredient for many precision physics predictions. Its uncertainty is still one of the dominant
ones in the electroweak fits constraining the Higgs mass [4]. There are also many evaluations
which are more theory-driven, extending the application of perturbative QCD down to 2 GeV
or so (see for example the references in [4]). An alternative approach was put forward to use
the Adler function [5] and perturbative QCD in the negative Q2 (spacelike) region [6], where
∆α is a smooth function.

Until now there have been only a few direct observations of the running of the QED cou-
pling [7,8,9,10]. Most of these analyses involve measurements of cross sections and their ratios
and obtain values of α(Q2) which are found to deviate from α0 or from the assumed value of
the coupling at some initial scale. Theoretical uncertainties on the predicted absolute cross
sections as well as experimental scale errors can hurt such determinations or reduce their sig-
nificance. The s-channel results from the TOPAZ [7] and the OPAL [8] experiments were based
on e+e−annihilations to leptonic final states. Far enough from the Z resonance these processes
are dominated by single photon exchange, although they substantially involve the full elec-
troweak theory. Large angle Bhabha scattering has been studied by the VENUS [9] and L3 [10]
experiments to measure the running in the spacelike region. In this case both s- and t-channel
γ-exchange diagrams are important and the effective QED coupling appears as a function of s
or t respectively. Moreover weak contributions of Z-exchange interference are also sizeable.

In this paper we measure the running of α in the spacelike region, by studying the angular
dependence of the small angle Bhabha scattering. The spectrum is modified by the running
coupling which appears as α2(t) and the square momentum transfer t is simply related to the
polar scattering angle. We use the small angular region accepted for the luminosity measure-
ment, which approximately corresponds to 2 ≤ −t ≤ 6 GeV2 at centre-of-mass energy about
the Z resonance peak. At such t scale the average ∆α is about 2%. The counting rate of small
angle Bhabha events is used to determine the integrated luminosity, so that we cannot do an
absolute measurement of α(t), rather we will look only at the shape. This is affected by the
expected variation of the coupling throughout the acceptance, which is about 0.5%, leading
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to an observable effect of about 1%. An interesting property of such low |t| region is that,
although the absolute ∆α value is dominated by the leptonic contributions, the variation of the
hadronic contribution is predicted to be three times faster, resulting in similar contributions to
the variation of the coupling. There has been only one previous attempt to test directly the
momentum transfer dependence of α in a way free of normalization errors by the L3 collabo-
ration [10]. To date there exists no direct experimental evidence for the hadronic contribution
to the running.

The small angle Bhabha scattering appears as an ideal place for a direct measurement of the
running of α(Q2) in a single experiment. This has been pointed out also recently [11]. Among
the advantages are the very high available statistics and the purity of the data sample. In
this work a crucial part has the very high precision in measuring the scattering angle which
was possible by the OPAL Silicon-Tungsten (SiW) luminometer [12]. Not less important is the
cleanliness of the measurement from a theoretical point of view. Small angle Bhabha scattering
is strongly dominated by single-photon t-channel exchange, while s-channel photon exchange
is practically negligible. It is currently exactly calculable up to the leading O(α2) terms in
the QED photonic corrections (herein indicated as O(α2L2), where L = ln(|t|/m2

e) − 1 is the
big logarithm). Many existing calculations were described in [13] and there were also widely
cross-checked mainly to reduce the theoretical error on the determination of the luminosity
at LEP1. Higher order terms are partially accounted through exponentiation. Many of these
calculations are available in the convenient form of Monte Carlo programs and have been also
extensively checked by the LEP experiments. There exists also a calculation accurate to the
subleading O(α2) terms [14]. Corrections for Z interference are very small and well known,
so that small angle Bhabha scattering is basically a pure QED process. A comparison of data
with such precise calculations can determine the value of the effective QED coupling in the
most precise way without relying on the correctness of the SU(2)×U(1) electroweak model.

The paper is organized in this way: in section 2 we explain the analysis method, the detector
and its Monte Carlo simulation is briefly described in section 3 and the event selection in section
4. The procedure to correct the data distributions is explained in section 5. The fit results
including only statistical errors are given in section 6, while the systematic errors are described
in detail in section 7. The theoretical uncertainties are discussed in section 8. The results are
finally given in section 9, and a conclusive summary in section 10.

2 Analysis method

The Bhabha differential cross section can be written in the following form for small scattering
angle:

dσ

dt
=

dσ(0)

dt

(
α(t)

α0

)2

(1 + ε) (1 + δγ) + δZ (2)

where:
dσ(0)

dt
=

4πα2
0

t2
(3)

is the Born term for t-channel single photon exchange, α0 is the fine structure constant, α(t)
is the effective coupling at the momentum transfer scale t. Here ε represents the radiative
corrections to the Born cross section, δγ the contribution of s-channel photon exchange and
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δZ the contribution of Z exchange. The contributions of δγ and δZ are much smaller than
those of ε and the vacuum polarization. Therefore with a precise knowledge of the radiative
corrections (ε term) one can determine the effective coupling α(t) by measuring the differential
cross section. Actually the form of equation (2) is an approximation as the δγ term is not really
factorized with the effective coupling α2(t). In fact the s-channel amplitude has coupling α(s).
The practical validity is a consequence of the smallness of the δγ term, which could even be
neglected.

The counting rate of Bhabha events in the SiW luminometers is used to determine the integrated
luminosity, so that we cannot do an absolute measurement of α(t), unless an independent
determination of the luminosity were available. Instead, the structure of the cross section as
written in (2) easily allows to determine the variation of α(t) over the accessible t range. In
fact the vacuum polarization gives the term (α(t)/α0)

2, factorized with the dominant piece of
the cross section. At the leading order the variable t is simply related to the scattering angle:

t = −s
1 − cos θ

2
≈ −sθ2

4
(4)

Photon radiation (in particolar Initial State Radiation) smears this correspondence. The event
selection that we will be using, described in section 4, has been carefully studied to reduce
the impact of radiative events. In particular the energy cuts and the acollinearity cut are very
effective. As a result the event sample is strongly dominated by two cluster configurations,
with almost full energy back-to-back scattered e+ and e−. For such selection the relation (4) is
well approximated. The polar scattering angle θ is measured from the radial position R of the
scattered e+ and e− at reference planes located within the SiW luminometers, at a distance z
from the interaction point:

θ = atan(R/z) (5)

We use the BHLUMI [15] Monte Carlo generator for small angle Bhabha scattering. It is
a multiphoton exponentiated generator accurate up to the leading logarithmic O(α2) terms.
Higher order photonic contributions are partially included by virtue of the exponentiation.
The generated events contain always the scattered electron and positron plus an arbitrary
number of (non-collinear) photons. Small contributions from s-channel photon exchange and
Z interference are also included. Corrections due to vacuum polarization are implemented
with a few choices for the parameterization of the hadronic term [2, 16]. We used the option
to generate weighted events, such that we could access all the available intermediate weights
which compose the final complete cross section event by event. In particular we could also
modify the parameterization of the vacuum polarization or set α(t) ≡ α0 to assume a fixed
coupling α0.

We will compare the radial distribution of the data (and hence the t-spectrum) with the predic-
tions of the BHLUMI Monte Carlo, to determine the running of α within the accepted region.
We followed two equivalent methods:

• We calculated the ratios of data and Monte Carlo events in each bin. The Monte Carlo
was modified by setting the coupling to the constant value α(t) ≡ α0. Then:

R(t) =
Ndata

NMC
∝
(

1

1 − ∆α(t)

)2

(6)
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The dominant dependence of ∆α(t) expected from theory is logarithmic. However within
the kinematic region of this analysis it may be approximated with a straight line. There
is no statistical sensitivity to deviations from a linear behaviour of the running. So we
fitted the ratios as:

R(t) = a + b|t| (7)

The b slope represents the full observable effect of the running of α(t), both the leptonic
and the hadronic component. It is related to the variation of the coupling by:

b = 2
∆α(t2) − ∆α(t1)

|t2| − |t1| =
2

|t2| − |t1|
α−1(t2) − α−1(t1)

α−1
0

(8)

where t1 and t2 correspond to the acceptance limits.

• The hadronic contribution to the vacuum polarization is included in the Monte Carlo
with the parameterization [16] of the form :

∆αhad = A + B ln (1 + C |t|) (9)

The coefficients A, B and C have different values in intervals of |t| which depend on the
detailed method of extraction of the parameterization. We fixed A and C to their values
at the average |t| of our data sample, leaving B as a free parameter. In this case the
leptonic contribution to the vacuum polarization ∆αlep was kept at the calculated value.

The effective slope defined in (7) is slightly variable for the different data samples, as their
average centre-of-mass energy varies. To combine the results we can practically redefine b in
(7) as:

b = b∗
∆t∗

∆t
(10)

where ∆t is the actual energy-dependent t range, ∆t∗ corresponds to a reference centre-of-mass
energy

√
s = 91.1 GeV, and then fit for b∗. With the acceptance cuts specified in section 4 the

reference t range is: t∗1 = −1.78 GeV2, t∗2 = −5.96 GeV2, ∆t∗ = |t∗2| − |t∗1| = 4.18 GeV2.

3 Detector, data samples and Monte Carlo simulation

The OPAL detector and trigger have been described in detail elsewhere [17]. In particular this
analysis is based on the silicon-tungsten luminometer (SiW), which was used to determine the
luminosity from the counting rate of accepted Bhabha events, starting from 1993. The SiW was
designed to improve the precision of the luminosity measurement to better than 1 per mille.
In fact it achieved a fractional experimental systematic error of 3.4 × 10−4. The detector and
the luminosity measurement are extensively described in [12]. Here we only review briefly the
detector aspects relevant for this analysis.

The OPAL SiW luminometer consisted of 2 identical cylindrical calorimeters, encircling the
beam pipe simmetrically at about ±2.5 m from the interaction point. Each calorimeter is a
stack of 19 silicon layers interleaved with 18 tungsten plates, with a sensitive depth of 14 cm,
representing 22 radiation lenghts (X0). The first 14 tungsten plates are each 1 X0 thick, while
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the last 4 are each 2 X0 thick. The sensitive area fully covers radii between 6.2 and 14.2 cm
from the beam axis. Each detector layer is segmented with R − φ geometry in a 32 × 32
pad array. The pad size is 2.5 mm radially and 11.25 degrees in azimuth. In total the whole
luminometer had 38,912 readout channels corresponding to the individual silicon pads. The
calibration was studied with electrical pulses generated both on the readout chips and on the
front-end boards, as well as with ionization signals generated in the silicon using test beams
and laboratory sources. Overall pad-to-pad gain variations were within 1%.

We use the data samples collected in 1993-95 at energies close to the Z resonance peak. In
total they amount to 101 pb−1 of OPAL data.

For the LEP2 data-taking started in 1996 the detector configuration changed, with the instal-
lation of tungsten shields designed to protect the inner tracking detectors from synchrotron
radiation. These introduced about 50 radiation lengths of material in front of the calorimeters
between 26 and 33 mrad from the beam axis, thus reducing the useful acceptance of the detec-
tor at the lower polar angle limit. Moreover the new fiducial acceptance cut fell right in the
middle of the previous acceptance, where the preshowering material was maximum. For these
reasons we have limited this analysis to the LEP1 data samples.

The OPAL SiW detector simulation does not rely on a detailed physical simulation of electro-
magnetic showers in the detector. Instead it is based on a parameterization of the detector
response obtained from the data [12]. This approach gives a much more reliable description
of the tails of the detector response functions, which are primarily due to extreme fluctuations
in shower development, than we could obtain using any existing program which attempts to
simulate the basic interactions of electrons and photons in matter. The measured LEP beam
size and divergence, as well as the measured offset and tilt of the beam with respect to the
calorimeters are also incorporated in this simulation. The Monte Carlo simulation is used to
correct the acceptance for the effects of the detector energy response, the coordinate resolution
and LEP beam parameters. The data are divided in 9 subsamples according to the average
centre-of-mass energy and the values of the beam parameters, which slightly varied. For each
subsample we generated an independent sample of BHLUMI events subjected to detector sim-
ulation with corresponding setting of the parameters. The statistics were always at least 10
times those of the corresponding data set.

There are other acceptance corrections which are not accounted by the Monte Carlo simulation,
but rather applied directly to data. These include the trigger efficiency, accidental background,
detector metrology and most importantly biases in the reconstructed radial coordinate. The
latter is crucial for this analysis and will be discussed in section 5.

4 Event selection

The event selection criteria can be classified into isolation cuts, which isolate a sample of pure
Bhabha scattering events from the off-momentum background, and acceptance defining, or
definition cuts. The isolation cuts are used to define a fiducial set of events which lie within the
good acceptance of both calorimeters and are essentially background free. The definition cuts
then select subsets of events from within the fiducial sample. Showers generated by incident
electrons and photons are recognized as clusters in the calorimeters and their energies and
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coordinates determined. The fine segmentation of the detectors allows incident particles with
separations greater than 1 cm to be individually reconstructed with good efficiency.

The coordinate system used throughout this paper is cylindrical, with the z-axis pointing along
the direction of the electron beam, passing through the centers of the two calorimeter bores.
The origin of the azimuthal coordinate, φ, is in the horizontal plane, towards the inside of the
LEP ring. All radial coordinate measurements are projected to reference planes at a distance
of ±246.0225 cm from the nominal intersection point. These reference planes correspond to the
nominal position of the silicon layers 7 X0 deep in the two calorimeters.

The isolation cuts consist of the following requirements, imposed on (RR,φR) and (RL,φL),
the radial and azimuthal coordinates of the highest energy cluster associated with the Bhabha
event, in each of the right and left calorimeters, and on ER and EL, the total fiducial energy
deposited by the Bhabha event in each of the two calorimeters, explicitly including the energy
of radiated photons:

• Loose radial cut, right (left) 6.7 cm < RR < 13.7 cm
(6.7 cm < RL < 13.7 cm)

• Acoplanarity cut ||φR − φL| − π| < 200 mrad

• Acollinearity cut |RR − RL| < 2.5 cm

• Minimum energy cut, right (left) ER > 0.5 · Ebeam

(EL > 0.5 · Ebeam)

• Average energy cut (ER + EL) /2 > 0.75 · Ebeam

Note that by defining the energy cuts relative to the beam energy, Ebeam, the selection efficiency
is largely independent of

√
s.

The acollinearity cut (which corresponds to approximately 10.4 mrad) is introduced in order
to ensure that the acceptance for single radiative events is effectively determined geometrically
and not by the explicit energy cuts.

The isolation cuts accept events in which the radial coordinate, in both the Right and the
Left side, is more than two pad width (0.5 cm) away from the edge of the sensitive area of
the detector. The definition cuts, based solely on the reconstructed radial positions (RR, RL)
of the two highest energy clusters, then require the radial position on either side to be within
two extra pads towards the inside of the acceptance. For the correction procedure explained in
section 5 we refer to one specified silicon layer, which can be varied with some freedom. The
Right and Left definition cuts are chosen so as to correspond closely to radial pad boundaries
in the same detector layer. When the chosen layer is the reference one at 7 X0, the definition
cuts are:

• Right side 7.2 cm < RR < 13.2 cm

• Left side 7.2 cm < RL < 13.2 cm

Expressed in terms of polar angles, these cuts correspond to 29.257 and 53.602 mrad. When
alternative layers are chosen the acceptance cuts are projected to the layer at 7 X0. For
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example when using the layer at 4 X0, Rmin = 7.25842 cm and Rmax = 13.30710 cm. The
radial distributions after the isolation cuts are shown in Fig. 1 for the complete LEP1 statistics
and compared to Monte Carlo distributions normalized to the same number of events. The
agreement is very good, except in the central part where effects of the preshowering material
are expected. Correction of the radial distributions is one of the main issues and is described
in the next section.

5 Radial coordinate correction

The reconstruction of the radial coordinate is the key element to control the systematic errors
to the desired accuracy. It is explained in detail in [12]. The last step is the so-called anchor-
ing. This procedure was meant to correct any residual bias which could remain on the final
reconstructed radius R on either side of the calorimeter at the pad boundaries defining the
edges of the acceptance. For the luminosity measurement the correction affected only the total
acceptance. Here we want to bin the radial distribution to determine its shape, so we need to
correct for radial biases occuring at any bin edge.

The reconstruction method respects the simmetry condition that a shower which deposits equal
energies on two adjacent pads in the reference layer at 7 X0 has to be reconstructed in the mean
exactly at the boundary between the pads. In reality, due to the R − φ geometry of the pads,
the true position of such showers is at a smaller radius than the pad boundary. This is termed
the pad boundary bias and depends on the lateral shower spread. The pad boundary bias has
been measured in a test beam.

The test beam employed a SiW calorimeter module of 3 azimuthal wedges fully equipped in
depth, and a four-plane, double-sided Si micro-strip telescope with a resolution of better than
3 µm for individual tracks. The geometry of the calorimeter pads with respect to the telescope
was determined using a beam of 100 GeV muons. The muon beam was alternated with one of
45 GeV electrons.

As the radial position of the incoming particles is scanned across a radial pad boundary in a
single layer, the probability for observing the largest pad signal above or below this boundary
shifts rapidly, giving an image of the pad boundary as shown in Fig. 2. These plots are obtained
from OPAL data taken in 1993-94 and refer to three radial pad boundaries in layer 4 X0 of the
Right calorimeter. The pad boundary images are modelled with an error function (a gaussian
convoluted with a step function), where the gaussian width σ1 is related to the resolution at the
boundary and the difference between the nominal and the apparent boundary position, defined
by the half-height of the step, is called the radial offset Roff .

At the test beam the difference in Roff obtained by changing from electron to muon beam was
the measured pad boundary bias, which was found to follow a linear dependence increasing
with σ. The fitted linear parameterization was assigned an error of 2 µm. During the OPAL
running the radial position is determined by the SiW calorimeter alone, so that the width
observed from the pad boundary images is an apparent one. The relation between the true σ
and the apparent σa was also measured at the test beam and is used to convert the observed σa

1In [12] the variable w was defined differing by a numerical factor from the width: w =
√

2 σ.
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The reconstruction of the radial coordinate is the key element to control the systematic errors
to the desired accuracy. It is explained in detail in [12]. The last step is the so-called anchoring.
This procedure was meant to correct any residual bias which could remain on the final
reconstructed radius R on either side of the calorimeter at the pad boundaries defining the
edges of the acceptance. For the luminosity measurement the correction affected only the total
acceptance. Here we want to bin the radial distribution to determine its shape, so we need to
correct for radial biases occuring at any bin edge.
The reconstruction method respects the simmetry condition that a shower which deposits equal
energies on two adjacent pads in the reference layer at 7 X0 has to be reconstructed in the mean
exactly at the boundary between the pads. In reality, due to the R − \phi geometry of the pads,
the true position of such showers is at a smaller radius than the pad boundary. This is termed
the pad boundary bias and depends on the lateral shower spread. The pad boundary bias has
been measured in a test beam.
The test beam employed a SiW calorimeter module of 3 azimuthal wedges fully equipped in
depth, and a four-plane, double-sided Si micro-strip telescope with a resolution of better than
3 \mum for individual tracks. The geometry of the calorimeter pads with respect to the telescope
was determined using a beam of 100 GeV muons. The muon beam was alternated with one of
45 GeV electrons.
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to the true σ. The uncertainty on the conversion factor from σa to σ has been estimated from
the difference between the test beam with no additional material and with 0.84 X0 of material
in front of the detector.

In OPAL data Roff measures the shift of the observed pad boundary image from the nominal
position of the pad boundary. Such shifts can be produced by a large number of causes: pad
gain fluctuations, metrology shifts, detector malfunctions, resolution effects and preshowering.
The pad boundary bias is determined by converting the apparent σa to the true σ and then
using the test beam results to find the corresponding geometric bias. Fig. 2 shows that a
gaussian resolution does not perfectly describe the tails of the distribution. To the extent
that the pad boundary image maintains an odd symmetry about the apparent pad boundary,
its non-gaussian behaviour does not affect the determination of Roff as can be seen from the
close agreement of the data points and the fitted curve near the pad boundary. We have also
considered a model in which the apparent pad boundary is taken as the median of the observed
resolution function. The difference between the two models is assigned as a systematic error
of the fit method, when it is larger than the fit statistical error, otherwise the latter is kept as
estimate. A further difference of the test beam with respect to the OPAL data is that it was
carried out at a radial position close to the inner acceptance cut. The geometrical bias due to
R − φ pads is expected to scale as 1/R, thus decreasing at a greater radius of pad curvature.
Therefore we have scaled in this way the bias estimated by using the test beam results, but
assign an additional systematic error equal to 50% of the expected bias to account for possible
deviations from this behaviour.

The total net bias (also called anchor) δR on the position of a pad boundary is given by:

δR = Roff + δRRφ + δRres (11)

where Roff is the coordinate offset which may have positive or negative sign, δRRφ is the
pad boundary bias, always positive and δRres is a small (positive) additional bias due to the
resolution flow. The latter results from the steeply falling radial resolution and can be thought
as a second-order effect.

From Fig. 2 one can see that the width is similar at the inner and outer radius, while it is
considerably greater at the central radius. The offset Roff is found very small at the inner
edge while it increases to ≈ 10 − 20 µm at the central and the outer radius. Among other
effects, the observed Roff is affected by fluctuations in the pad gain. We have checked these
effects directly on data, by studying Roff as a function of the 32 azimuthal divisions of the
calorimeters. We assign the size of the azimuthal variations, (Roff )RMS/

√
32, as a systematic

error in the anchors, due to pad gain vaiations.

The anchors determined from 1993-94 data for the layers at 4 X0 and all the pad boundaries
used in the analysis are shown in Fig. 3. A similar trend is visible in the two sides, in particular
the rise of the anchor from about zero at the inner edge to 20 − 25 µm around R = 9 cm.
The inner error bars are the statistical errors in the fit of the pad boundary images. The full
error bars include in quadrature the systematic errors from: fit method, pad gain variations, σa

conversion, test beam parameterization and the assumed 1/R scaling of the pad boundary bias.
The anchors determined from 1995 data have similar features although with lower statistics.

The anchors have been determined separately for 1993-94 and 1995 data, because the amount
of preshowering material was different in the two sub-samples. A clear relation with the amount
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and distribution of the material upstream of the calorimeters is visible from the apparent width
σa as a function of radius, as shown in Fig. 4. The distribution of material upstream of the
calorimeters was kept at a minimum especially in the crucial region of the inner acceptance cut
where it amounts to 0.25 X0. In the middle of the acceptance this material increases to about
2 X0 due to cables and support structures of the beam pipe. The remarkable difference between
the Right and Left widths in 1993-94 data is due to passage of cables from the OPAL microvertex
detector. For 1995 data additional cables were installed in the Right side, which restored
an almost symmetrical situation. The presence of a non-negligible amount of preshowering
material in the middle of the acceptance constitutes the most delicate experimental problem,
as the anchoring procedure was developed and checked at the test beam only for the almost
ideal situation of a bare calorimeter or of less than 1 X0 of preshowering material. Therefore
we checked thoroughly the anchoring procedure in OPAL data before trusting its results.

The acceptance of an individual radial bin with boundaries (Rinn, Rout) is corrected by in-
troducing the anchors δRinn, δRout determined as in (11) in the following formula, giving the
fractional correction:

δA

A
= cinn δRinn − cout δRout (12)

The coefficients cinn and cout are derived by a simple analytical calculation assuming a 1/θ3

spectrum for the angular distribution and are given by:

ck =

1
R3

k

1
2

(
1

R2
inn

− 1
R2

out

) k = inn, out (13)

The corrections are at most 0.5% (1%) for the Right (Left) side in 1993-94 data and 0.8%
(0.7%) for the Right (Left) side in 1995 data.

The reconstructed radial coordinate can be studied by simultaneously varying the value of the
radial cut in the data and in the Monte Carlo. The Monte Carlo assumes that the radial
coordinate is reconstructed without bias. Thus any difference in the acceptance of the data
and Monte Carlo as the inner cut is varied, beyond that expected from the finite statistics,
can be attributed to biases in the radial coordinate. The relative acceptance, as a function of
the value of the inner radial definition cut is shown for the Right and the Left side selection
in Fig. 5 for 1993-94 data. The width of the shaded bands represents the binomial errors with
respect to the reference selection 7.20 cm ≤ R ≤ 13.20 cm. The solid points show the anchoring
results for all the relevant pad boundaries in layers between 1 X0 and 10 X0. The estimated
radial biases are converted into acceptance variations using the formula:

δA

A
= 2

R2
innR

2
out

R2
out − R2

inn

δR

R3
(14)

where Rinn = 7.20 cm, Rout = 13.20 cm and R is varied from Rinn to Rout. Since the normal-
ization is the total acceptance, the low R points have a greater weight in the plot, as is implied
by the 1/R3 dependence. Therefore any visible structure tends to be flattened at increasing
radius.

In the plot the anchor at the inner cut R = 7.20 cm in layer 7 X0 has been required to lie at
zero. Each group of nearby points, marked by either circles or triangles, refer to a given pad
row boundary in different layers, that is at variable depth into the calorimeters. Since all the
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coordinates are projected to the reference layer 7 X0 they are spaced by about 200 µm at the
inner radius and by about 350 µm at the outer radius from one layer to the other. The arrows
mark the position of a given pad row boundary in layer 7 X0, deeper layers have a lower R and
shallower layers a higher R.

As the plot shows the variation in the integrated acceptance, the most relevant thing to inspect
is the slope of the acceptance variation as the radius is varied. Moreover the plot shows as
reference the anchors in layer 7 X0, as the starting value at R = 7.20 cm is set to zero,
coincident with origin of the band. If an alternative layer is chosen the normalization should
be done with respect to that point. The applicability of the method appears safe for the range
of layers which give an almost flat behaviour, compatible with the shaded band. A discrepancy
is apparent for the deepest layers considered (8 − 10 X0), in particular for the Left side. This
is most evident in the central region of acceptance, where the amount of material between the
detector and the interaction point is large and the test beam measurement of the expected bias
may no longer be applicable. To stay away from such problems we have selected layer 4 X0

as the central layer for anchoring, and checked the results with alternative anchors from layer
1 X0 to layer 7 X0.

An amazing illustration of the anchoring capability is possible by downgrading the quality of the
reconstructed radial coordinate and then determining the resulting (larger) radial biases. The
last step in radial reconstruction before the anchoring procedure is a smoothing algorithm [12],
which was implemented to remove a residual bias resulting from the variable position resolution
across the pad structure of the detector. This bias has a maximum amplitude of ±50 µm and
has a periodic structure with period equal to the 2.5 mm pad width. If we repeat the game
of Fig. 5, switching off the smoothing from the radial reconstruction, the result is Fig. 6. The
alternative anchors track the expected acceptance variations for each of the pad rows and most
of the depth range studied. Similar considerations apply here as said before. The anchoring
has been further checked in the following section 7.1.

6 Fit

The fit results on the nine data sets are shown in Table 1. Each number is obtained by a linear
fit as (7) on 24 points. Data have been corrected with anchors on layer 4 X0 and only the
data statistical errors are considered. The nine samples give consistent results, with χ2 of the
average of 6.5/8 for the Right side and 5.6/8 for the Left side. However the quality of some
of the individual fits is not good in particular on the Left side. Considering for example the
largest dataset (94 b) the χ2 of the linear fit (7) is 27.8/22 on the Right side and 101.9/22 on
the Left side. To sharpen the sensitivity to correlated systematic effects we combined the six
1993-94 distributions, the three 1995 distributions and also all the nine distributions together.
We checked the quality of the fits by including also the anchoring systematic errors, discussed
in the previous section. They all have been conservatively considered uncorrelated as a function
of radius, except for the error of the fit method. Uncorrelated errors on the anchors actually
produce anti-correlations between adjacent bins. These short range effects may deteriorate
greatly the fit χ2 even if producing small effects on the fitted slope. We have then built 24×24
covariance matrices implementing these systematic errors for radial distributions binned with
1 bin equal to 1 detector pad (2.5 mm). We checked the fit χ2 both before and after the
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anchoring correction. The results are shown in Tables 2-3 and illustrated by Figure 7 for the
combination of all data. Considering that Right and Left distributions on a given data set are
almost completely statistically correlated the χ2 values should be similar. Instead we see a big
χ2 difference for the combined 1993-94 fits between the Right and Left side. This points to the
presence of systematic errors. Their origin is reasonably the greater amount of preshowering
material upstream of the Left side calorimeter for 1993-94 data. This will be made clearer in
the next section. Allowing for the known systematic errors a good χ2 is obtained in every case,
as reported in Tables 2-3.

7 Systematic uncertainties

The systematic uncertainties are grouped in classes and summarized in Table 6.

7.1 Anchoring errors

This class includes all the uncertainties described in section 5, connected with the anchoring
procedure. Their contribution on the fitted slope has been assessed by the covariance matrix
described in the previous section. They have been taken as the additional quadratic contribution
to the fit error on the slope and have been determined separately for the 1993-94 and 1995 data.
We obtain 15(16)×10−5/GeV 2 for the Right (Left) side in 1993-94 data and 18(21)×10−5/GeV 2

for the Right (Left) side in 1995 data.

A practical way to check these errors on data is comparing the fitted slope obtained by anchoring
in different layers of the detector. In this way we can probe at least the systematic errors which
are uncorrelated between different layers. These include in particular the errors due to pad
gain variations which constitute one of the main component of the total error. By anchoring
on layers from 1 X0 to 6 X0 the standard deviation of the fitted slope is 5(26) × 10−5/GeV 2

for the Right (Left) side in 1993-94 data and 18(19) × 10−5/GeV 2 for the Right (Left) side in
1995 data. For the Right side the rms is within the attributed systematic error, in particular
comfortably less than it for the most precise 1993-94 data. Instead for the Left side we find a
significantly larger rms in 1993-94 data, greater than our estimate based on the error matrix.
This further confirms the presence of leftover systematic errors for the Left side data.

The choice of the preferred Si-layer used for anchoring was motivated by the results shown in
Figg. 5 and 6. Now the acceptable range of layers can be quantitatively verified by studying
the variation of the fit χ2 with the anchoring layer. We checked layers from 1 X0 to 10 X0

by fitting the combined data samples. The resulting χ2 of the fit is plotted in Figure 8 before
and after anchoring, considering only statistical errors. It is apparent that the reference layer
7 X0 is much worse than shallower layers. Deeper layers (8-10 X0) are progressively worse and
worse. By considering the (cleanest) 1993-94 data in the Right side the anchoring is shown to
improve the χ2 in layers 1 − 6 X0, reaching the minimum value in layer 3 X0. Allowing also
for systematic errors the χ2 is shown in Figure 9 for the four homogeneus data classes. This
shows that the layers 1 − 6 X0 are good.
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7.2 Dead material

The amount of preshowering material is maximum in the middle of the accepted radial range,
as it is reflected in the σa distribution shown in Figure 4. We have thus defined two regions:

• clean region, R ≤ 8.2 cm and R ≥ 11.7 cm, corresponding to the first 4 pads starting
from the inner radial cut and the last 6 pads close to the outer cut;

• bad region, 8.2 < R < 11.7 cm, corresponding to the central 14 pads.

The fitted slopes, reported in Table 4, agree in the two regions. The breakdown of the χ2 in
Table 5 makes visible that the bad χ2 values originate from the bad region. This is particularly
evident for the larger statistics 1993-94 data. In 1995 data the χ2 values seem under control
(statistics are considerably lower though) and the two sides seem equivalent.

It is natural to expect a possible extra bias in the bad region, particularly in the Left side. We
have checked for it, by introducing a new parameter x in the fit, related to this assumed extra
bias with two optional models:

• Box-model, a naive choice assuming a constant extra bias within the bad radial region
and no extra bias outside of it. Here x is the constant extra bias.

• W-model, the extra bias δRextra is assumed to follow the pattern of σ versus R:

δRextra = x
σ(R) − σ(Rinn)

σmax − σ(Rinn)
(15)

where Rinn is the inner acceptance cut (σ is minimum there) and σmax is the maximum
value of σ, which is reached tipically at central radius (R ≈ 10.2 cm). So δRextra = x
when σ(R) = σmax.

No evidence for an extra bias is found in either of the two tests. We take as systematic
uncertainty the statistical sensitivity of the check, quantified as the additional contribution to
the error on the slope generated by the introduction of the extra bias in the fit. We obtain
10(18)× 10−5/GeV 2 for the Right (Left) side in 1993-94 data and 27(30)× 10−5/GeV 2 for the
Right (Left) side in 1995 data. A final verification can be done by comparing the fitted slopes
in the whole acceptance (Tables 2-3) and in the restricted clean region (Table 4) for each of the
various cases. The differences are always within the attributed uncertainty.

Note that the estimated error for the Left side is about twice that for the Right side in 1993-94
data. This is further commented in section 7.7.

7.3 Energy

Uncertainties due to the energy response have been assessed by varying the parameters in
the detector simulation within the precision they have been estimated from the data. They

12



include the gaussian width of the energy response function, the exponential low-energy tail,
the nonlinearity and the method used to extrapolate the energy resolution to lower energies.
For each change we determined the variation in the fitted slope parameter and then we took
the sum in quadrature of all the variations. The dominating uncertainty is the one on the
low-energy tail of the response function, which is due to events that shower very late in the
detector, events not fully contained and events with electrons and positrons that scatter off
upstream material. The resulting uncertainty is 5×10−5/GeV2 for both the Right and the Left
calorimeter.

7.4 Beam parameters

The uncertainties related to the beam parameters are calculable as simple geometric effects
which modify the radial acceptance simply assuming a 1/θ3 angular distribution. Here, with
regard to the slope of the radial distribution, it is enough to work out the estimates by dividing
the radial acceptance in only two bins. In this way one gets in general a conservative estimate,
as the isolation cuts, which are neglected analytically, decrease considerably the acceptance
variations induced by the beam parameters.

The transverse beam offset is measured run-by-run with a precision better than 10 µm and gives
a negligible uncertainty on the fitted slope. The beam tilt is the most important effect. Its two
components are determined run-by-run as the difference of the eccentricities measured by the
Right and Left calorimeters on the x and y axes. The statistical accuracy on the eccentricities is
200−300 µm for typical runs. On the nine data sets the uncertainty related to the average beam
tilt contributes 1 − 3 × 10−5/GeV2. These errors have been conservatively taken twice: both
correlated and uncorrelated. To cover the possibility of rapid tilt variations, on a timescale
shorter than an individual run, we have conservatively taken the variation corresponding to
switch off completely the beam tilt. The resulting effect depends on the measured Right and
Left eccentricities, so it is slightly different in the two calorimeters, since a non zero tilt angle
is measured. Note that random variations in the angles of the electron and positron beams will
appear as additional contribution to the beam divergence which is considered as an independent
parameter. In order for the tilts to have an effect on the acceptance which is not included in
the divergence correction, the trajectories of the incoming positron and electron beams must
change in a correlated manner. They range from 1 × 10−5/GeV2 for the largest sample (94-b)
to 10 × 10−5/GeV2 in the worst cases. We have taken such numbers as uncorrelated errors,
with an additional common correlated systematic equal to 1× 10−5/GeV2.

The transverse beam size and divergence give effects similar to a radial resolution. They can
be calculated by expressing the radial acceptance variation due to the resolution flow. The
uncertainty due to the beam size is conservatively estimated by taking the full size of the effect:
its contribution to the slope is below 1 × 10−5/GeV2 and has been neglected. The uncertainty
on the beam divergence, estimated by comparing two independent determinations, ranges from
≈ 100 µrad for 1993-94 data and ≈ 130 µrad for 1995 data. The resulting uncertainty on
the slope is 1 × 10−5/GeV2 and 2 × 10−5/GeV2 respectively. We have taken these errors as
uncorrelated but additionally a correlated term equal to 1 × 10−5 has been considered.

The longitudinal position of the beam spot has a constant effect on the radial acceptance so
gives no contribution to the slope. The same holds for the longitudinal size of the beam spot.
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The uncertainties estimated in this way have been checked with the results of Monte Carlo
simulations where one parameter at a time can be varied. In this case the isolation cuts are
included, at the price of some statistical limitation. The results are consistent.

7.5 Radial resolution

The radial resolution at pad boundaries in the clean acceptance near the inner edge of the
detector has been measured at the test beam to be 130 µm. The apparent resolution at
the outer edge and in the central portion of the detector, behind the bulk of the preshowering
material, is degraded approximately by a factor of 2 to 2.5, according to the pattern of Figure 4.
The Monte Carlo simulation includes an average radial dependence accounting for this. We
conservatively assessed the uncertainty related to radial resolution by dividing the acceptance
in two radial bins and calculating the full effect of the resolution flow on the slope. It amounts
to 4(10) × 10−5/GeV2 for the Right (Left) side of 1993-94 data and 7(9) × 10−5/GeV2 for the
Right (Left) side of 1995 data. The contribution of the resolution flow across the acollinearity
cuts is negligible in comparison, amounting to 1 × 10−5/GeV2 in all cases.

7.6 Acollinearity bias

The acollinearity distribution, with the selection cuts |∆R| ≤ 2.5 cm, is not anchored as the
radial distribution. Therefore it is subjected to biases of the order of the anchors themselves.
In the worst case there could be a first order effect causing a net gain or loss of events at both
the positive and the negative ∆R cut. This is conservatively estimated by considering a bias
with absolute value ∆Rbias = 30 µm, which is the maximum value reached by the anchors.
In addition the smoothed radial coordinate has an inherent bias of up to 15 µm which gives
another uncorrelated contribution. The sum in quadrature of both the two effects gives an
uncertainty on the slope of 3 × 10−5/GeV2.

7.7 Summary of systematic errors

We have observed significant differences between the Right and the Left side radial distributions,
which are consistently understood as effects of the different amount of preshowering material for
the bulk of data, taken in 1993-94. The Left side calorimeter had more dead material upstream
and this is reflected in the apparent radial resolution (Figure 4) and in the plots comparing
data and Monte Carlo (Figures 1, 5, 6). The χ2 of our fits is very sensitive to any bias in data
and we found that the central region behind the bulk of material in the Left side is mostly
responsible for the observed bad χ2 values. The anchoring procedure to correct radial biases
has proven capable to deal with less than 2 X0 of preshowering material which was present
upstream of the Right side calorimeter, but seems insufficient for the slightly worse conditions
of the Left calorimeter, with less than 1 X0 extra material. Despite this modest difference, the
data quality is visibly different. We believe that this is due to the highly non-linear behaviour
of preshowering effects. The study of anchors and fit χ2 as function of the silicon layer depth
supports this interpretation.
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The dominant systematic errors are the ones related to anchoring and dead material, described
in sections 7.1 and 7.2. The latter was estimated to be almost twice for the Left side w.r.t.
the Right side. To keep the systematic errors at the minimum we used the Right side data for
the final fit, while the Left side was looked at only as a check. The difference between them is
anyway quite small, b∗Left − b∗Right = −22×10−5/GeV2, as can be seen in Table 1. This is found
to reduce to +8 × 10−5/GeV2 when a coarser binning is used, as for the final result.

The experimental systematic uncertainties are summarized in Table 6 for the Right side data.
The quadratic sum of the correlated and uncorrelated systematic errors is about 29×10−5/GeV2

for the Right side 1993-94 data and 40 × 10−5 for 1995 data. The larger error of 1995 data is
due to the increased preshowering material.

The final experimental error correlation matrix (including the statistical errors) is given in
Table 7. The correlations reach at most 10 %. The classification of the detailed sources of error
into correlated and uncorrelated components given in Table 6 does not reveal the complete
pattern of correlations embodied in the full correlation matrix. In that table the errors classified
as correlated are fully correlated between all data samples, while those classified as uncorrelated
are often correlated within a given year, but uncorrelated between years.

8 Theoretical uncertainties

It is very important to assess the theoretical uncertainties implied by the BHLUMI Monte
Carlo. In fact a reliable determination of the running coupling constant from equation (2)
needs a precise knowledge of the radiative corrections.

The theoretical uncertainty of the BHLUMI calculation of small angle Bhabha scattering has
been extensively studied for the typical selections of LEP experiments. The accepted fractional
theoretical error is 6.1×10−4 for the integrated cross section at LEP1 energy [13,18] which was
relevant for the determination of the integrated luminosity. Alternative existing calculations
have been widely cross-checked with BHLUMI [13]. Moreover all the four LEP collaborations
used this Monte Carlo for many years, guarantee for possible technical imperfections. Therefore
the estimate of the theoretical uncertainty of BHLUMI is solid. BHLUMI does not include
diagrams with extra light pairs (e+e−, µ+µ−, ...). Their contribution was calculated explicitly
for the (idealized) OPAL acceptance, giving a fractional correction of −4.4 ± 1.4 × 10−4 [19].
With this correction the theoretical error on the integrated luminosity was reduced to 5.4×10−4,
dominated by uncertainties on vacuum polarization and photonic corrections.

We have studied the uncertainty on the slope of the differential cross section in a conservative
way, by degrading the precision of BHLUMI of the last perturbative order. Since BHLUMI
includes completely the O(α2L2) terms we have compared it to the exact O(α) calculation.
This check has the additional advantage that within the BHLUMI package it is available the
independent fixed O(α) calculation of the former OLDBIS Monte Carlo programme [20], which
is in turn based on the calculation of an independent group [21]. Thus this check covers also
the technical precision. BHLUMI gives access to many intermediate weights which compose
the final calculation, so that we could also check several different approximations.

We did this study by using a slightly modified version of the idealized model of the OPAL
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detector, which is contained in the BHLUMI package (subroutine TRIOSIW). We generated
the events within a safely enlarged angular region to protect against loss of visible events. This
code was used also for the work of [13]. Smearing effects are neglected and an ideal beam is
assumed. Nearby particles are combined by a clustering algorithm which has a window matched
to the experimental resolution. The energy is defined by summing all the particles inside the
isolation cuts on each calorimeter. The position variables R and φ are defined as the coordinates
of the highest energy particle reconstructed on each side. On these reconstructed variables we
applied all the isolation cuts listed in section 4. The differential cross section obtained at
different perturbative orders is shown in Figure 10 normalized to the reference BHLUMI cross
section. Here vacuum polarization, Z-exchange interference and s-channel photon interference
have been switched off. The Born cross section is reduced by about 5 − 15 % by radiative
corrections, depending on the polar angle. Cross section at O(α) is slightly lower than the
reference but in general within 1 %, except for the upper edge of the angular acceptance where
the difference is close to 2 %. The O(α)exp calculation is almost identical to the reference.

We fit the ratio of calculations at different orders and determine the b-slope, which would
transfer on our fit of data. The results are shown in Figure 11 and are:

OLBIS[O(α)]/BHLUMI ⇒ b = −29 ± 21 × 10−5/GeV 2

O(α)exp/BHLUMI ⇒ b = +6 ± 13 × 10−5/GeV 2

We take half the result of the O(α)/BHLUMI fit as a conservative estimate of the systematic
error related to neglected photonic corrections (14× 10−5/GeV2). The size of the window used
by the cluster algorithm (on R and φ) has been varied over a large range to verify the stability
of the result. The result of the O(α)/BHLUMI fit moves at most by 3 × 10−5/GeV2, while
the O(α)exp/BHLUMI fit is unchanged. We point out that the acollinearity cut applied by our
selection is very effective in reducing the importance of the photonic radiative corrections. An
alternative idealized selection (similar to the ALEPH standard selection, named SICAL in [13])
without such a cut would end to a systematic error of 25 × 10−5/GeV2 according to the same
procedure.

The interference with Z exchange amplitude in the s-channel is a small correction, indicated
with δZ in equation (2), not factorized with respect to the main contribution and the running
coupling constant. It is energy dependent, vanishing at

√
s = mZ and changing sign across the

Z mass. In BHLUMI it is calculated at O(α)exp with vacuum polarization correction included.
Alternatively it can be obtained at the same order but without the vacuum polarization cor-
rection, at the Leading-Log level O(α0)exp or at the Born level. We have studied the effect of
uncertainties on this piece by degrading the default calculation to the Born approximation for
δZ . We generated large samples of events at three different energy points: the Z-peak energy
(set to

√
s = 91.1 GeV) and energies offset by 2 GeV up and down. Radiative corrections on Z

interference are found to shift the fitted slope by +31±15×10−5/GeV2 at
√

s = 89.1 GeV and
−20± 15× 10−5/GeV2 at

√
s = 93.1 GeV with respect to result obtained with the Born calcu-

lation. We have checked also the effect of the inclusion of vacuum polarization in the δZ term,
as this subtle effect could in principle perturb the asserted cleanliness of the measurement. We
find ±7 × 10−5/GeV2 for the induced shifts on the fitted slope, much less than the effect of
photonic corrections. The estimated theoretical uncertainties are summarized in Table 8.
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9 Results

The results are plotted in Fig. 12. Data are clearly incompatible with the hypothesis of fixed
coupling and also show a steeper slope than the expected behaviour for vacuum polarization
involving only leptons. The fitted linear dependence agrees well with the prediction of the
standard Burkhardt-Pietrzyk parameterization [16].

The combined value of the effective slope b∗ is:

b∗ = (200 ± 29 ± 24) × 10−5/GeV 2 (16)

where the first error is statistical and the second the experimental systematic. The statistical
significance of the measurement is 6.8σ, which becomes 5.2σ including the systematic errors.
The effective slope gives a measurement of the variation of the coupling α(t) by inverting
equation (8):

α−1(−1.90 GeV 2) − α−1(−5.27 GeV 2) = 0.462 ± 0.067 ± 0.055 (17)

This includes a very small correction of −0.007 for the bias of the method of linear fit instead
of the assumed logarithmic dependence. Our result is about 1σ lower than the prediction of the
Burkhardt-Pietrzyk parameterization included in BHLUMI [16] for the same t interval (which
gives 0.536).

If we take from the theoretical prediction the leptonic contribution to the running, δ(∆αlep) =
0.001698, which is known to a very high accuracy, we can determine the hadronic contribution
as:

∆αhad(−1.90 GeV 2) − ∆αhad(−5.27 GeV 2) = 0.00167 ± 0.00049 ± 0.00040 (18)

This has a statistical significance of 3.4 σ, reduced to 2.6 σ considering also the systematic errors.
Up to date this is the most significant experimental observation of the running of the QED
coupling in a single experiment and the cleanest possible when also theoretical uncertainties
are properly considered.

10 Conclusions

The scale dependence of the effective QED coupling α(t) has been measured from the angu-
lar spectrum of small angle Bhabha scattering by using the precise OPAL Silicon-Tungsten
calorimeters which were employed to determine the integrated luminosity. Despite the narrow
accessible t range, the method has high sensitivity due to the very high statistics and purity
of the data sample. The challenging aspect of the analysis is controlling the residual bias of
the reconstructed radial coordinate of Bhabha electrons impinging the detector face to a level
below ≈ 10 µm uniformly through all the acceptance. From a theoretical point of view the
environment is almost ideal as of cleanliness of the measurement. In fact for this kinematic
range the process is almost a pure QED one, Z interference is very small and the dominant
diagram is t-channel single-photon exchange, while s-channel photon exchange is negligible.
The small angle Bhabha scattering is one of the most precisely calculable processes, so there
is no significant contamination from photonic radiative corrections. We tested such point in a
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very conservative way and found that the radiative corrections are almost decoupled from the
t-slope, at least for the OPAL selection, which strongly reduces non-collinear final states.

We determined the effective slope of the Bhabha momentum transfer distribution which is
simply related to the average derivative of ∆α as a function of t (b∗ � 2<̇δ(∆α)

δt
>) in the

range 2 ≤ −t ≤ 6 GeV2. The observed t-spectrum agrees with the predicted behaviour of the
standard Burkhardt-Pietrzyk parameterization within 1 σ.

We obtain the strongest direct evidence for the running of αQED in a single experiment up to
date, with significance above 5 σ. Moreover we report the first clear experimental evidence for
the hadronic contribution to the running, with a significance of about 3 σ. This is one of the
very few existing experimental tests of the running of α(t) in the spacelike region, where ∆α
has a smooth behaviour.
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Dataset Right b∗ slope Left b∗ slope
×10−5/GeV2 ×10−5/GeV2

93 −2 139. ± 98. 94. ± 98.
93 pk 211. ± 98. 268. ± 98.
93 +2 153. ± 100. 159. ± 100.
94 a 124. ± 98. 58. ± 98.
94 b 252. ± 46. 217. ± 46.
94 c 16. ± 172. 105. ± 171.
95 −2 247. ± 98. 199. ± 98.
95 pk 251. ± 121. 188. ± 121.
95 +2 47. ± 98. 58. ± 98.

Average 194. ± 29. 172. ± 29.
χ2/d.o.f. 6.5/8 5.6/8

Table 1: Fitted slope for each data subsample and average for the Right and the Left radial
distributions. The errors are only statistical.

Right side
Dataset Anchoring b∗ slope χ2

unc (d.o.f.=22) χ2
cor (d.o.f.=22)

correction ×10−5/GeV2 stat. stat.+syst.
1993-94 −13. × 10−5/GeV2 201. ± 33. ± 18. 51.8 40.8 11.2
1995 +19. × 10−5/GeV2 172. ± 60. ± 22. 22.3 35.1 15.9

Table 2: Results of a combined fit on homogeneus data sets for the Right radial distribution,
giving the anchoring correction for the slope, the corrected slope with statistical and (anchoring)
systematic error and the fit χ2 for the uncorrected and the corrected distributions with only
statistical or statistical plus systematic errors with their covariance matrix.
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Left side
Dataset Anchoring b∗ slope χ2

unc (d.o.f.=22) χ2
cor (d.o.f.=22)

correction ×10−5/GeV2 stat. stat.+syst.
1993-94 −10. × 10−5/GeV2 181. ± 33. ± 19. 126.4 137.1 28.4
1995 +19. × 10−5/GeV2 144. ± 60. ± 24. 33.4 47.7 19.5

Table 3: Results of a combined fit on homogeneus data sets for the Left radial distribution,
giving the anchoring correction for the slope, the corrected slope with statistical and (anchoring)
systematic error and the fit χ2 for the uncorrected and the corrected distributions with only
statistical or statistical plus systematic errors with their covariance matrix.

Dataset Right b∗ slope Left b∗ slope
×10−5/GeV2 ×10−5/GeV2

1993-94 CLEAN 195. ± 40. 168. ± 40.
BAD 207. ± 76. 225. ± 76.

1995 CLEAN 202. ± 70. 149. ± 70.
BAD 82 ± 134 124. ± 134.

All CLEAN 196. ± 35. 163. ± 35.
BAD 177. ± 66. 200. ± 66.

Table 4: Fitted slope separately for the CLEAN and the BAD radial range of acceptance, for
homogeneus data sets. Both the Right and the Left side results are given. The errors are only
statistical.

Right side Left side
Dataset χ2/d.o.f. χ2/d.o.f.

stat. stat.+syst. stat. stat.+syst.

1993-94 CLEAN 13.6 /8 5.0 /8 18.7 /8 6.5 /8
1995 CLEAN 12.5 /8 7.0 /8 4.0 /8 1.4 /8
1993-94 BAD 22.2 /12 6.3 /12 98.1 /12 21.2/12
1995 BAD 20.6 /12 8.6 /12 42.0 /12 17.1 /12

Table 5: χ2 of the separate fits to the CLEAN and the BAD radial range of acceptance, for
homogeneus data sets, for both the Right and the Left side distributions. The given values are
obtained after anchoring considering only statistical errors or statistical and systematic errors
with their covariance matrix.
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Uncertainty 93 -2 93 pk 93 +2 94a 94b 94c 95 -2 95 pk 95 +2
Anchoring

uncorrelated 3. 3. 3. 3. 3. 3. 6. 6. 6.
correlated 15. 15. 15. 15. 15. 15. 17. 17. 17.

Dead Material
uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.

correlated 10. 10. 10. 10. 10. 10. 27. 27. 27.
Energy

uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.
correlated 5. 5. 5. 5. 5. 5. 5. 5. 5.

Beam parameters
uncorrelated 5. 9. 6. 2. 2. 4. 4. 7. 9.

correlated 2. 2. 2. 2. 2. 2. 2. 2. 2.
Radial resolution

uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.
correlated 4. 4. 4. 4. 4. 4. 7. 7. 7.

Acollinearity bias
uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.

correlated 3. 3. 3. 3. 3. 3. 3. 3. 3.
M.C. statistics

uncorrelated 21. 21. 21. 38. 21. 65. 21. 21. 21.
correlated 0. 0. 0. 0. 0. 0. 0. 0. 0.

Sum
uncorrelated 22. 23. 22. 38. 21. 65. 22. 23. 23.

correlated 19. 19. 19. 19. 19. 19. 33. 33. 33.

Total Systematic error 29. 30. 29. 43. 29. 68. 40. 40. 41.

Table 6: Summary of the systematic uncertainties on the measurement of the effective slope b∗

for the nine data sets. They are given broken down into the component uncorrelated among
the data sets and the correlated one. All errors are in units of 10−5/GeV2.

Sample 93 -2 93 pk 93 +2 94 a 94 b 94 c 95 -2 95 pk 95 +2

93 -2 1.00 0.04 0.04 0.04 0.07 0.02 0.05 0.05 0.05
93 pk 0.04 1.00 0.04 0.04 0.07 0.02 0.05 0.05 0.05
93 +2 0.04 0.04 1.00 0.03 0.07 0.02 0.05 0.04 0.05
94 a 0.04 0.04 0.03 1.00 0.07 0.02 0.05 0.04 0.05
94 b 0.07 0.07 0.07 0.07 1.00 0.04 0.10 0.09 0.10
94 c 0.02 0.02 0.02 0.02 0.04 1.00 0.03 0.03 0.03
95 -2 0.05 0.05 0.05 0.05 0.10 0.03 1.00 0.08 0.10
95 pk 0.05 0.05 0.04 0.04 0.09 0.03 0.08 1.00 0.08
95 +2 0.05 0.05 0.05 0.05 0.10 0.03 0.10 0.08 1.00

Table 7: The experimental correlation matrix of the nine data sets.
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δb × 10−5/GeV 2

Error source peak peak - 2 peak + 2

Photonic corrections 14. 14. 14.
Z-interference 7. 16. 14.
Total 16. 21. 20.

Table 8: The estimated theoretical uncertainties on the measurement of the effective slope b∗,
at centre-of-mass energies of 91.1, 89.1, 93.1 GeV.
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Figure 2: Pad boundary images obtained on Si-layer after 4 X0 at three different radial positions
corresponding to the inner edge, the middle portion and the outer edge of the acceptance. The
solid curve shows the fitted function, whose parameters Roff and σapp are written.
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Figure 3: The total net bias (anchor) as a function of radius for the Right (upper plot) and
the Left (bottom plot) radial coordinate determined on Si-layer after 4 X0, for the combined
1993-94 data sample. The full error bars show the total error, the inner bars the statistical
component.
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Figure 4: The apparent width as a function of radius determined from the anchoring procedure
on Si-Layer after 4 X0 for the four homogeneus data subsamples. The included errors are only
statistical.
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Figure 7: Ratio of data and Monte Carlo (with ∆α set to zero) for the combination of all LEP1
data, for the Right side (up) and the Left side (bottom) distributions. Each point corresponds
to the size of one radial pad. The solid triangles show the data corrected with anchors in
layer 4 X0, the empty circles the uncorrected data (slightly shifted on the left for clarity), with
statistical errors in both cases. The line shows the fit result.
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Figure 8: Fit χ2 (d.o.f.=22) for combined data samples as a function of the anchoring layer,
separately for Right and Left distributions. The solid triangles show the χ2 after anchoring,
the open circles for uncorrected distributions. Only statistical errors are considered. The upper
plots refer to the combination of all data, the central ones to 1993-94 data, the bottom ones to
1995 data.
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Figure 9: Fit χ2 (d.o.f.=22) for combined data samples as a function of the anchoring layer,
separately for Right and Left distributions. The solid triangles show the χ2 after anchoring,
with statistical and systematic errors described by the covariance matrix. The upper plots refer
to the combination of 1993-94 data, the lower ones to 1995 data.
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normalized to the reference BHLUMI calculation. Vacuum polarization, Z-interference and
s-channel photon contributions are switched off.
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Figure 11: Differential cross section as a function of the polar scattering angle calculated by
the BHLUMI package for the OPAL selection with exact (OLDBIS) or exponentiated O(α)
matrix element, normalized to the reference BHLUMI calculation. Vacuum polarization, Z-
interference and s-channel photon contributions are switched off. The fitted line is used to
conservatively assess the theoretical uncertainty.
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Figure 12: |t| spectrum normalized to the BHLUMI theoretical prediction for a fixed coupling
(∆α = 0). The points show the combined LEP1 data with statistical error bars, the solid
line is our fit. The horizontal dot-dashed axis would be the prediction if α were fixed. The
dashed curve is the prediction of running α determined by vacuum polarization with only virtual
lepton pairs (∆α = ∆αlep), the dotted curve with both lepton and quark pairs, calculated by
the Burkhardt-Pietrzyk parameterization.
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