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1 Introduction

The electromagnetic coupling constant is a basic parameter of the Standard Model, known with
a relative precision of 4 × 10−9 [1] at zero momentum transfer. In QED the effective coupling
changes, or runs, with the scale of momentum transfer due to vacuum polarization. This is
due to virtual lepton or quark loop corrections to the photon propagator. This effect can also
be understood as an increasing penetration of the polarized cloud of virtual particles which
screen the bare electric charge of a particle as it is probed at smaller and smaller distance. The
effective QED coupling is generally expressed as:

α(Q2) =
α0

1 − ∆α(Q2)
(1)

where α0 = α(Q2 = 0) � 1/137.036 is the fine structure constant.

The value of ∆α can be calculated in field theory. Whereas the leptonic contributions are
calculable to very high accuracy, the hadronic ones are more problematic as they involve quark
masses and hadronic physics at low momentum scales. The hadronic contribution can be most
precisely determined through its relation to a dispersion integral over a parameterization of
the measured annihilation cross section of e+e−→ hadrons, supplemented with perturbative
QCD above resonances [2, 3]. The main difficulty of this approach comes from the integration
of experimental data in the region of hadronic resonances, which in turn gives the dominant
uncertainty on ∆α for positive (time-like) Q2. The effective QED coupling α(Q2) is an es-
sential ingredient for many precision physics predictions. It contributes one of the dominant
uncertainties in the electroweak fits constraining the Higgs mass [4]. There are also many eval-
uations which are more theory-driven, extending the application of perturbative QCD down to
about 2 GeV (see for example the references in [4]). An alternative approach uses the Adler
function [5] and perturbative QCD in the negative Q2 (space-like) region [6], where ∆α is a
smooth function.

Until now there have been only a few direct observations of the running of the QED coupling
[7, 8, 9, 10]. Most of these analyses involve measurements of cross sections and their ratios
and obtain values of α(Q2) which are found to deviate from α0 or from the assumed value of
the coupling at some initial scale. Theoretical uncertainties on the predicted absolute cross
sections as well as experimental scale errors can influence such determinations or reduce their
significance. The s-channel results from the TOPAZ [7] and the OPAL [8] experiments were
based on e+e−annihilations to leptonic final states. Far enough from the Z resonance these
processes are dominated by single photon exchange, although they substantially involve the
full electroweak theory. Large angle Bhabha scattering has been studied by the VENUS [9]
and L3 [10] experiments to measure the running in the space-like region. In this case both s-
and t-channel γ-exchange diagrams are important and the effective QED coupling appears as a
function of s or t respectively. Moreover interference contributions due to Z exchange are also
sizeable.

In this paper we measure the running of α in the space-like region, by studying the angular
dependence of small angle Bhabha scattering. The square of the momentum transfer t is simply
related to the polar scattering angle, and the scattering spectrum is modified by the running
coupling which appears as α2(t). We use the small angular region accepted for the luminosity
measurement, which approximately corresponds to 2 ≤ −t ≤ 6 GeV2 at centre-of-mass energy

1



near the Z resonance peak. At this t scale the average ∆α is about 2%. The number of small
angle Bhabha events is used to determine the integrated luminosity, so that we will not make
an absolute measurement of α(t), rather we will look only at the variation of ∆α across the
acceptance, which is expected to be about 0.5%, leading to an observable effect of about 1%. An
interesting property of this low |t| region is that, although the absolute ∆α value is dominated
by the leptonic contributions, the leptonic and hadronic components contribute about equally
to its variation across the region accessible to our measurements. There has been only one
similar attempt [10] to test the momentum transfer dependence of α directly in a way free of
normalization errors. There exists no previous direct experimental evidence for the hadronic
contribution to the running.

Small angle Bhabha scattering appears to be an ideal process for a direct measurement of
the running of α(Q2) in a single experiment. Among the advantages are the high available
statistics and the purity of the data sample. In this work a crucial element has been the very
high precision in measuring the scattering angle provided by the OPAL Silicon-Tungsten (SiW)
luminometer [12]. Not less important is the cleanliness of the measurement from a theoretical
point of view, which has also been pointed out recently [11]. Small angle Bhabha scattering is
strongly dominated by single-photon t-channel exchange, while s-channel photon exchange is
practically negligible. It is currently exactly calculable up to the leading O(α2) terms in the
QED photonic corrections (herein indicated as O(α2L2), where L = ln(|t|/m2

e) − 1 is the large
logarithm). Many existing calculations are described in [13] and were also widely cross-checked,
mainly to reduce the theoretical error on the determination of the luminosity at LEP1. Higher
order terms are partially accounted for through exponentiation. Many of these calculations
are available in the convenient form of Monte Carlo programs which also have been extensively
checked by the LEP experiments. A calculation accurate to the subleading O(α2) terms [14] also
exists. Corrections for Z interference are very small and well known, so that small angle Bhabha
scattering near the Z pole can be considered an essentially pure QED process. A comparison
of data with such precise calculations can determine the value of the effective QED coupling
in the most accurate way without relying on the correctness of the SU(2)×U(1) electroweak
model.

The paper is organized as follows: We explain the analysis method in section 2, the detector
and its Monte Carlo simulation is briefly described in section 3 and the event selection in section
4. The procedure to correct the data distributions is explained in section 5. The fit results
including only statistical errors are given in section 6, while the systematic errors are described
in detail in section 7. The theoretical uncertainties are discussed in section 8. The results are
finally given in section 9, and a conclusive summary in section 10.

2 Analysis method

The Bhabha differential cross section can be written in the following form for small scattering
angle:

dσ

dt
=

dσ(0)

dt

(
α(t)

α0

)2

(1 + ε) (1 + δγ) + δZ (2)
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where:
dσ(0)

dt
=

4πα2
0

t2
(3)

is the Born term for t-channel single photon exchange, α0 is the fine structure constant and
α(t) is the effective coupling at the momentum transfer scale t. Here ε represents the radiative
corrections to the Born cross section, δγ the contribution of s-channel photon exchange and δZ

the contribution of Z exchange, mostly from interference. The contributions of δγ and δZ are
much smaller than those of ε and the vacuum polarization. Therefore with a precise knowledge
of the radiative corrections (ε term) one can determine the effective coupling α(t) by measuring
the differential cross section. The form of equation (2) is an approximation since the δγ term is
not really factorizable with the effective coupling α2(t). In fact the s-channel amplitude couples
as α(s). The practical validity of equation (2) is a consequence of the smallness of the δγ term,
which could even be neglected.

The counting rate of Bhabha events in the SiW luminometers is used to determine the in-
tegrated luminosity, so that we cannot make an absolute measurement of α(t), without an
independent determination of the luminosity. Instead, the structure of the cross section as
written in (2) easily allows the variation of α(t) over the accessible t range to be determined,
since the dominant piece of the cross section contains the factor (α(t)/α0)

2. At leading order
the variable t is simply related to the scattering angle:

t = −s
1 − cos θ

2
≈ −s θ2

4
(4)

Photon radiation (in particular initial-state radiation) smears this correspondence. The event
selection that we use, described in section 4, has been carefully studied to reduce the impact
of radiative events. In particular the energy cuts and the acollinearity cut are very effective.
As a result the event sample is strongly dominated by two-cluster configurations, with almost
full energy back-to-back scattered e+ and e−. For such a selection the relation (4) represents
a good approximation. The polar scattering angle θ is measured from the radial position R of
the scattered e+ and e− at reference planes located within the SiW luminometers, at a distance
z from the interaction point:

θ = arctan(R/z) (5)

We use the BHLUMI [15] Monte Carlo generator for all calculations of small angle Bhabha
scattering. It is a multiphoton exponentiated generator accurate up to the leading logarith-
mic O(α2) terms. Higher order photonic contributions are partially included by virtue of the
exponentiation. The generated events always contain the scattered electron and positron plus
an arbitrary number of (non-collinear) photons. Small contributions from s-channel photon
exchange and Z interference are also included. Corrections due to vacuum polarization are
implemented with a few choices for the parameterization of the hadronic term [2,16]. We used
the option to generate weighted events, such that we could access all the available intermediate
weights which compose the final complete cross section event by event. In particular we could
also modify the parameterization of the vacuum polarization or set α(t) ≡ α0 to assume a fixed
coupling α0.

We will compare the radial distribution of the data (and hence the t-spectrum) with the predic-
tions of the BHLUMI Monte Carlo to determine the running of α within the accepted region.
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We calculated the ratios of data and Monte Carlo events in each bin. If the Monte Carlo is
modified by setting the coupling to the constant value α(t) ≡ α0, then:

R(t) =
Ndata

N0
MC

∝
(

1

1 − ∆α(t)

)2

. (6)

The dominant dependence of ∆α(t) expected from theory is logarithmic. However, within
the kinematic region of this analysis and the statistical sensitivity of the data, the expected
dependence may be approximated with a straight line. We fitted the ratios as:

R(t) = a + b |t| . (7)

The value of t in each bin is calculated according to Equation 4, averaged over the bin, assuming
the cross section dependence of Equation 3. The errors associated with these approximations
are negligable, and discussed in Section 7.9. The slope b represents the full observable effect of
the running of α(t), both the leptonic and hadronic components. It is related to the variation
of the coupling by:

∆α(t2) − ∆α(t1) =
b

2
(|t2| − |t1|) (8)

where t1 and t2 correspond to the acceptance limits. The parameter a is not relevant since the
Monte Carlo is normalized to the data.

The effective slope defined in (7) is slightly variable for the different data samples, since their
average centre-of-mass energy varies. To take this into account when combining the results we
define b in (7) as:

b = b∗
∆t∗

∆t
(9)

where ∆t is the actual energy-dependent t range and ∆t∗ corresponds to a reference centre-of-
mass energy

√
s = 91.1 GeV. Then we fit for b∗.

With the acceptance cuts specified in section 4 the reference t range is: t∗1 = −1.78 GeV2,
t∗2 = −5.96 GeV2, ∆t∗ = |t∗2|−|t∗1| = 4.18 GeV2. The expected value of the effective slope in this
t range is: b = 223×10−5/GeV2. It is important to realize which systematic effects could mimic
the expected running or disturb the measurement. The most harmful effects are biases in the
radial coordinate. Most simply one could think of dividing the detector acceptance in two and
determine the slope with only two bins. In such a conservative model the running is equivalent
to a bias in the central division of 70 microns. Biases on the inner or outer radial cut have less
importance and could mimic the running for respectively 90 or 210 microns. Concerning radial
metrology, an error of 0.5 mm on the inner radius would give the same observable slope as the
running. Knowledge of the beam parameters, particularly the transverse offset and the beam
divergence, is also quite important.

3 Detector, data samples and Monte Carlo simulation

The OPAL detector and trigger have been described in detail elsewhere [17]. In particular
this analysis is based on the silicon-tungsten luminometer (SiW), which was used to determine
the luminosity from the counting rate of accepted Bhabha events, from 1993 until the end of
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LEP running. The SiW was designed to improve the precision of the luminosity measurement
to better than 1 per mille. In fact it achieved a fractional experimental systematic error of
3.4 × 10−4. The detector and the luminosity measurement are extensively described in [12].
Here we only review briefly the detector aspects relevant for this analysis.

The OPAL SiW luminometer consists of 2 identical cylindrical calorimeters, encircling the
beam pipe symmetrically at about ±2.5 m from the interaction point. Each calorimeter is a
stack of 19 silicon layers interleaved with 18 tungsten plates, with a sensitive depth of 14 cm,
representing 22 radiation lengths (X0). The first 14 tungsten plates are each 1 X0 thick, while
the last 4 are each 2 X0 thick. The sensitive area fully covers radii between 6.2 and 14.2 cm
from the beam axis. Each detector layer is segmented with R − φ geometry in a 32 × 32
pad array. The pad size is 2.5 mm radially and 11.25 degrees in azimuth. In total the whole
luminometer has 38,912 readout channels corresponding to the individual silicon pads. The
calibration was studied with electrical pulses generated both on the readout chips and on the
front-end boards, as well as with ionization signals generated in the silicon using test beams and
laboratory sources. Overall pad-to-pad gain variations were within 1%. Particles originating at
the interaction point had to traverse the material constituting the beam pipe and its support
structures as well as cables from inner detector components before reaching the face of the
SiW calorimeters. The distribution of this material upstream of the calorimeters is shown in
Fig. 1. The material thickness was kept at a minimum especially in the crucial region of the
inner acceptance cut where it amounts to 0.25 X0, while in the middle of the acceptance it
increases to about 2 X0. Controlling and correcting the possible biases in the reconstructed
position caused by this material was one of the most important aspects of this analysis and is
addressed in the following sections.

We use the data samples collected in 1993-95 at energies close to the Z resonance peak. In
total they amount to 101 pb−1 of OPAL data, corresponding to 12.0×106 accepted small angle
Bhabha events. When LEP2 data-taking started in 1996 the detector configuration changed,
with the installation of tungsten shields designed to protect the inner tracking detectors from
synchrotron radiation. These introduced about 50 radiation lengths of material in front of the
calorimeters between 26 and 33 mrad from the beam axis, thus reducing the useful acceptance
of the detector at the lower polar angle limit. Moreover the new fiducial acceptance cut fell
right in the middle of the previous acceptance, where the preshowering material was maximum.
For these reasons we have limited this analysis to the LEP1 data samples.

The OPAL SiW detector simulation does not rely on a detailed physical simulation of electro-
magnetic showers in the detector. Instead it is based on a parameterization of the detector
response obtained from the data [12]. This approach gives a much more reliable description
of the tails of the detector response functions, which are primarily due to extreme fluctuations
in shower development, than we could obtain using any existing program which attempts to
simulate the basic interactions of electrons and photons in matter. The measured LEP beam
size and divergence, as well as the measured offset and tilt of the beam with respect to the
calorimeters are also incorporated in this simulation. The Monte Carlo simulation is used to
correct the acceptance for the effects of the detector energy response, the coordinate resolution
and LEP beam parameters. We divided the data into nine subsamples, depending on the year
and the centre-of-mass energy, and generated an independent sample of BHLUMI events cor-
responding to each one of them, using a slightly different set of parameters in each case. The
statistics were always at least 10 times those of the corresponding data set.
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There are other corrections which are not accounted for by the Monte Carlo simulation, but
rather applied directly to the data. These take care of accidental background, detector metrol-
ogy and most importantly biases in the reconstructed radial coordinate. The latter is crucial
for this analysis and will be discussed in section 5.

4 Event selection

The event selection criteria can be classified into isolation cuts, which isolate a sample of pure
Bhabha scattering events from the off-momentum background, and acceptance defining, or
definition cuts. The isolation cuts are used to define a fiducial set of events which lie within the
good acceptance of both calorimeters and are essentially background free. The definition cuts
then select subsets of events from within the fiducial sample. Showers generated by incident
electrons and photons are recognized as clusters in the calorimeters and their energies and
coordinates determined. The fine segmentation of the detectors allows incident particles with
separations greater than 1 cm to be individually reconstructed with good efficiency.

The coordinate system used throughout this paper is cylindrical, with the z-axis pointing along
the direction of the electron beam, passing through the centers of the two calorimeter bores.
The origin of the azimuthal coordinate, φ, is in the horizontal plane, towards the inside of the
LEP ring. All radial coordinate measurements are projected to reference planes at a distance
of ±246.0225 cm from the nominal intersection point. These reference planes correspond to the
nominal position of the silicon layers 7 X0 deep in the two calorimeters.

The isolation cuts consist of the following requirements, imposed on (RR,φR) and (RL,φL),
the radial and azimuthal coordinates of the highest energy cluster associated with the Bhabha
event, in each of the right and left calorimeters, and on ER and EL, the total fiducial energy
deposited by the Bhabha event in each of the two calorimeters, explicitly including any detected
energy of radiated photons:

• Loose radial cut, right (left) 6.7 cm < RR < 13.7 cm
(6.7 cm < RL < 13.7 cm)

• Acoplanarity cut ||φR − φL| − π| < 200 mrad

• Acollinearity cut |RR − RL| < 2.5 cm

• Minimum energy cut, right (left) ER > 0.5 · Ebeam

(EL > 0.5 · Ebeam)

• Average energy cut (ER + EL) /2 > 0.75 · Ebeam

Note that by defining the energy cuts relative to the beam energy, Ebeam, the selection efficiency
is largely independent of

√
s.

The acollinearity cut (which corresponds to approximately 10.4 mrad) is introduced in order
to ensure that the acceptance for single radiative events is effectively determined geometrically
and not by the explicit energy cuts.
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The isolation cuts accept events in which the radial coordinate, on both the Right and the Left
side, is more than two pad widths (0.5 cm) away from the edge of the sensitive area of the
detector. The definition cuts, based solely on the reconstructed radial positions (RR, RL) of
the two highest energy clusters, then require the radial position on either side to be at least
two further pads towards the inside of the acceptance. For the correction procedure explained
in section 5 we refer to one specific silicon layer, which can be varied with some freedom. The
Right and Left definition cuts are chosen so as to correspond closely to radial pad boundaries
in the same detector layer. When the chosen layer is the reference layer at 7 X0, the definition
cuts are:

• Right side 7.2 cm < RR < 13.2 cm

• Left side 7.2 cm < RL < 13.2 cm

Expressed in terms of polar angles, these cuts correspond to 29.257 and 53.602 mrad.

When alternative layers are chosen the acceptance cuts and all the radial bin boundaries ap-
propriate to that layer are projected to the layer at 7 X0. For example when using the layer at
4 X0, Rmin = 7.2584 cm and Rmax = 13.3071 cm. This rebinning introduces small statistical
fluctuations in our fits depending on the specific choice of the layer, and is applied to be most
naturally connected with the correction procedure for the radial distribution.

The radial distributions after the isolation cuts are shown in Fig. 2 for the complete LEP1
statistics and compared to Monte Carlo distributions normalized to the same number of events.
The agreement is good except in the central part, where effects of the preshowering material
are expected. Their correction is described in the following section.

The acceptance specified by the definition cuts is 0.5 cm (corresponding to two radial pad
widths) wider than what has been used to define the OPAL luminosity [12]. In this way we
extend the lever arm for observation of the running. The compatibility of the added data is
quite good as can be seen from Fig. 2, where each point corresponds to one pad width. The
agreement has been quantified by determining the χ2 increase obtained when the fit in the
former default acceptance is extended by 2 or 3 pads at both the inner and outer radius. The
∆χ2 is fully consistent with purely statistical fluctuations corresponding to the added degrees
of freedom.

5 Radial coordinate correction

Limitation of systematic error in the reconstructed radial coordinate, and particularly the
limitation of any variation in the error from bin to bin, is key to the current measurement.
Two complementary strategies are used to determine the radius of showering particles incident
on the luminometer. The first is to utilize the information from the large number of pads
throughout the depth of the detector which record signals from the shower to form a single,
continuous, shower coordinate. The second is to utilize the inherent pad structure of the
detector. Here we rely on the fact that, on average, the pad with the maximum signal in any
particular layer will contain the shower axis. The first strategy has the advantage of providing
a continuous measurement of maximum resolution. It also offers maximum immunity from any
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large deviations due to an anomaly in a single pad signal. The second has the advantage of
maintaining a transparent relation with the basic symmetry conditions of the detector. We
refer to the first, robust, method as using uncorrected coordinates. When information from the
pad receiving the maximum signal in any particular layer is applied, we refer to the coordinate
as being corrected or anchored.

Details of how the coordinates are found from the recorded pad information are found in [12],
but the essentials are as follows:

• Radial triplets of pads about the peak of the shower profile in each layer of the detector are
used to form a continuous radial coordinate for the shower in that layer. The algorithm
preserves two symmetry conditions: If the two largest pad signals in the triplet are equal,
the coordinate falls on the pad boundary. Secondly, if the signals on the two extreme
pads of the triplet are equal, the coordinate falls at the centre of the central pad.

• Acceptable layer coordinates in layers 2 to 10 are projected onto the reference plane of the
detector, layer 7, which lies near the average longitudinal shower maximum, and averaged.

• This average coordinate is then linearized, or smoothed, to remove residual non-linearities.
The smoothing algorithm imposes the constraint that no coordinate is allowed to cross
the radius of a pad boundary in the reference layer 7.

• Any violation of the basic symmetry constraints of the measurement which may have been
introduced in the process of constructing the average shower coordinate is then limited
by comparing, in the ensemble, the average coordinate with the maximum pad observed
in a large number of layers. This final procedure is termed anchoring the coordinate.

For the luminosity measurement, the anchoring proceedure was essential in establishing the
absolute radius of the crucial inner acceptance boundary. In the current analysis it becomes
even more important, since it is also used to correct the acceptance for every bin of the radial
distribution. For this reason we discuss it here in some detail.

5.1 Anchoring Corrections

As the radial position of the incoming particles is scanned across a radial pad boundary in a
single layer, the probability for observing the largest pad signal above or below this boundary
shifts rapidly, giving an image of the pad boundary as shown in Fig. 3. These plots are obtained
from OPAL data taken in 1993-94 and refer to three radial pad boundaries in layer 4 X0 of the
Right calorimeter. Similar plots were also made for test beam data. The pad boundary images
are modelled with an error function (a Gaussian convoluted with a step function), where the
Gaussian width σa = wa/

√
2 measures the resolution at the boundary, while the radial offset

Roff measures the displacement of the observed step from the nominal pad boundary.

From Fig. 3 one can see that the width is similar at the inner and outer radius, while it is
considerably greater at the central radius. The offset Roff is found to be quite small at the
inner edge while it increases to ≈ 10 − 20 µm at the central and the outer radius.
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Despite our reliance on the essential symmetry condition of the reconstruction, in reality this
symmetry is slightly violated due to the R − φ geometry of the pads, and the corresponding
increase of pad area with radius. As a result, the mean position of an ensemble of showers which
share energy equally between two adjacent pads will actually lie at a smaller radius than the
pad boundary. This is termed the pad boundary bias, δRRφ, and depends on the lateral extent
of the shower. The pad boundary bias has been measured in a test beam and parametrized as
a function of the apparent width of the shower, wa, and varies from essentially zero to about
20 µm.

An additional, second order, effect also arises whenever a cut is imposed on a quantity with
a steeply falling distribution, such as the radial Bhabha spectrum. An acceptance change is
introduced due to the fact that more events actually on the uphill side of the cut will be
measured to fall on the downhill side than vice–versa. This resolution flow, δRres, is a small
(positive) additional bias which can be expressed as:

δA

A
=

df

dx

σ2
x

2
(10)

where f(x) is the intensity of events normalized to unity over the considered acceptance A,
and σx is the resolution in the variable x upon which the cut is imposed. For our measurement
the relative acceptance change varies from almost zero to about 1.5× 10−4, corresponding to a
δRres of about 8 µm.

The total net bias in the uncorrected coordinate, δR (also called anchor), as determined by the
position of a pad boundary image is therefore given by:

δR = Roff + δRRφ + δRres (11)

where Roff is the observed offset of the pad boundary image, which may have positive or
negative sign, while both δRRφ and δRres are always positive.

The anchors determined from 1993-94 data for the layers at 4 X0 for all the pad boundaries used
in the analysis are shown in Fig. 4. A similar trend is visible on the two sides, in particular the
rise of the anchor from 5− 10 µm at the inner edge to 20− 25 µm around R = 9 cm. The error
bars include in quadrature the systematic errors from the fit method, pad gain variations, and
the assumed 1/R scaling and shower width dependence of the pad boundary bias as discussed
in Section 7.1. The inner error bars show the statistical errors in the fit of the pad boundary
images. More details on errors assigned to the anchors can be found in [12]. The anchors
determined from 1995 data have similar features although with lower statistics.

The anchors have been determined separately for 1993-94 and 1995 data, because the amount
of preshowering material was different in the two sub-samples. A clear relation with the amount
and distribution of the material upstream of the calorimeters is visible from the apparent width
σa as a function of radius, as shown in Fig. 5. The noticeable difference between the Right
and Left widths in 1993-94 data is due to the presence of cables from the OPAL microvertex
detector. For 1995 data additional cables were installed in the Right side, which restored
an almost symmetrical situation. The presence of a non-negligible amount of preshowering
material in the middle of the acceptance constitutes the most delicate experimental problem
for this analysis, since the anchoring procedure was developed and checked using the test
beam only for the amount of preshowering material (< 1 X0) most relevant for the luminosity
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measurement. We have therefore made extensive checks as described in Section 5.2 and 7.1 to
identify a broad region within the detector where the anchoring procedure is valid, and derive
our results using only the center of this region.

To use the anchors, we do not actually correct the measured shower coordinates themselves,
but rather convert the anchors to appropriate acceptance corrections. The acceptance of an
individual radial bin with boundaries (Rin, Rout) is affected by the net biases of the edges
δRin, δRout determined as in (11) according to the following formula, which gives the fractional
acceptance variation:

δA

A
= cin δRin − cout δRout (12)

The coefficients cin and cout are derived by a simple analytical calculation assuming a 1/θ3

spectrum for the angular distribution and are given by:

ck =

1
R3

k

1
2

(
1

R2
in
− 1

R2
out

) k = in, out (13)

Whether we plot uncorrected coordinates or apply the anchoring corrections, we bin the radial
distribution according to the nominal pad boundaries of a particular layer, projected onto the
reference layer 7 X0. The particular layer chosen is always the one used in determining the
relevant anchors. These anchoring corrections are at most 0.5% for the Right and 1.0% for the
Left side in 1993-94 data and correspondingly 0.8% and 0.7% in 1995 data.

5.2 Limitations in the Anchoring

Our strongest insurance against the presence of excess systematic error in the radial shower
coordinate is to demand consistency between the corrected and uncorrected coordinates. As al-
ready mentioned, the uncorrected coordinates are robust, and derived from the signals observed
on a large number of pads throughout the detector, while the corrected coordinates rest on ob-
serving equal signals, in the mean, inside and outside of an indivdual radial pad boundary in a
particular detector layer. These corrected coordinates provide reliable benchmarks throughout
most of the detector, but are expected to become fragile at both very shallow and very deep
layers of the calorimeters, particularly in the region of the detector obscured by significant
preshowering material.

Not only does the lateral shower profile broaden deep within the calorimeter, but beyond shower
maximum the energy in the shower also becomes smaller. Both these effects make determination
of the pad boundary transition increasingly subject to disturbance. At shallow depths, partic-
ularly behind preshowering material located considerably upstream of the detector, a shower
can frequently develop a long, asymmetric tail which can lead to a significantly non-Gaussian
error in the position determined in a single layer.

The pad boundary bias was determined in the test beam behind a maximum of 0.84 X0 of pre-
radiating material. Under such conditions, and at reasonable depths, we determined that the
pad boundary bias could be adequately parametrized as a function of the apparent shower width
alone. Behind greater amounts of preshowering material, the validity of this simplification may
break down, and we can expect that an additional, explicit, depth dependence may become
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necessary to adequately describe the pad boundary bias at both very shallow and very deep
layers within the calorimeter.

We therefore compared the corrected and uncorrected coordinates as a function of the layer
used for the anchoring to expose such effects. As expected, significant deviations are observed
at both very shallow and very deep layers, particularly on the Left side in the 1993-4 data,
where the the pre-showering material was greatest.

The uncorrectd radial coordinate can be studied by simultaneously varying the value of the
radial cut in the data and in the Monte Carlo. The Monte Carlo here assumes the expected
running of α and that the radial coordinate is reconstructed without bias. Thus differences in
the acceptance of the data and Monte Carlo as the radial cut is varied, beyond those expected
from the finite statistics and any departure from the expected running of α, can indicate biases
in the radial coordinate. Letting ∆A = A(R; Rout) − A(Rin; Rout) be the acceptance change
obtained by moving the inner radial cut to any given position R, and setting Adata(Rin; Rout) =
AMC(Rin; Rout) to disregard the integral normalization, we form the quantity:

(
∆A

A

)
data

−
(

∆A

A

)
MC

=
Adata(R; Rout) − AMC(R; Rout)

Adata(Rin; Rout)
(14)

This relative acceptance, as a function of R is shown as a shaded band (the lower one) for the
Right and the Left side selection in Fig. 6 for 1993-94 data. The width of the bands represents
the binomial errors with respect to the reference selection 7.20 cm ≤ R ≤ 13.20 cm. Note that,
by construction, both ends of the relative acceptance band at R = 7.2 cm and R = 13.2 cm are
required to lie at zero.

The solid points show the anchoring results for all the relevant pad boundaries in layers between
1 X0 and 10 X0. The radial bias corresponding to each anchor is converted into an acceptance
variation using the formula:

δA

A
= 2

R2
inR2

out

R2
out − R2

in

δR

R3
(15)

where Rin = 7.20 cm, Rout = 13.20 cm and R is varied from Rin to Rout. Since the normalization
is the total acceptance, the low R points have a greater weight in the plot, due to the 1/R3

dependence. Therefore any visible structure tends to be flattened at increasing radius. Any of
the anchors can be chosen to fix the absolute offset in the continuous radial coordinate, here
we choose the anchor at R = 7.20 cm in layer 7 X0 and this point correspondingly lies at zero.

Each group of nearby points, marked by either circles or triangles, refer to a given radial
pad boundary in different layers, that is at variable depth in the calorimeters. Since all the
coordinates are projected to the reference layer 7 X0, the corresponding pad boundaries in
adjacent layers differ by about 200 µm at the inner radius and by about 350 µm at the outer
radius after projection. The arrows mark the position of a given pad boundary in layer 7 X0,
deeper layers have a lower R and shallower layers a higher R. Note that in contrast to the
acceptance bands also shown in this figure, these anchoring points are independent of the
Monte Carlo, and do not depend on the assumed running of α.

The essential point of Fig. 6 is that the anchor points derived from individual pad boundaries
should follow the relative acceptance band derived from the distribution of coordinates, since
this shows that the two independent methods of determining shower positions in the calorimeter
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are in agreement. It must also be remembered that the choice of which anchor to use in fixing
the global offset of the radial coordinate is arbitrary. Almost all anchors are found to be
consistent, even in those regions where the relative acceptance band reveals the presence of
residual structure in the coordinate. However, clear discrepancies are apparent for the deepest
layers considered (8−10 X0), in particular for the Left side. This is most evident in the central
region of acceptance, where the amount of material between the detector and the interaction
point is large and the parametrization of the expected bias derived from the test beam is
evidently no longer applicable. The behavior of the anchors with depth indicates that the onset
of these problems is abrupt, and a large region of the detector remains well understood for
use in our analysis. Notice that in the obscured region of the detector the run-away of the
anchors occurs almost exactly one layer earlier on the Left side of the detector, at layer 8 X0

than it does on the Right, indicating that the 0.5 X0 of additional preshowering material has
an effect larger than an equivalent amount of compact absorbing material in the detector. We
have therefore selected layer 4 X0 as the central layer for anchoring, and checked the results
with alternative anchors from layer 1 X0 to layer 7 X0.

This comparison of the uncorrected data and Monte Carlo depends on the running of α that
we want to measure, so the remarkably flat shape of the relative acceptance means that the
data agrees with the input α(t) in the Monte Carlo. To make this clear we have also plotted
the prediction for zero running as the hatched bands. The highly significant “eyebrow” shape
of the zero-running acceptance bands, and their clear separation from the flat Standard Model
bands is a graphic representation of our measurement’s sensitivity.

The run-away anchors in the deepest layers considered are consistent with the eyebrows, how-
ever, and show that the effects of the preshowering material for these deep layers, particularly
on the Left side, would give an apparent shape consistent with zero running. As mentioned
previously this is equivalent to biases of about 70µm in the middle of the acceptance.

6 Finding Safe Anchors for the Measurement

In order to see more directly the effect of anchoring imperfections on the slope of the running
which we wish to measure, we have made a series of test fits to determine the running slope,
b∗, for each choice of anchoring layer. The fits are simple χ2 fits of the ratio of data to Monte
Carlo events observed in each bin to the two coeficients of Equation 7. The Monte Carlo in
this case assumes a constant value of α: α(t) ≡ α0. Since anchoring problems may manifest
themselves either as increased fluctuations from bin to bin, or as broader, more dangerous,
systematic effects highly correlated between nearby bins, we pursue two lines of investigation.

In the first we study the stability of the anchors at individual pad boundaries. To do so, we
divide the radial distribution into the maximum number of bins: at each layer a bin corresponds
to each of the 24 pads in the fiducial region. Since the assesed systematic errors are somewhat
correlated from bin to bin, we consider only statistical errors, which are in any case dominant.
To isolate the effects associated with the anchors, we focus on the difference in χ2 between the
corrected and uncorrected distributions.

Fig. 9 shows the difference between corrected and uncorrected χ2 (d.o.f.=22) as a function of
the anchoring layer. It is apparent that beyond layer 7 X0 the χ2 becomes progressively worse.
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By considering the (cleanest) 1993-94 data on the Right side, the anchoring improves the χ2

in layers 1 − 6 X0. These results indicate that the anchors deeper than layer 6 X0 suffer from
fluctuations significantly larger than the inherent statistical uncertainties, and therefore are
not suitable for use in the measurement. On the other hand, the anchor fluctuations in layers
1 − 6 X0 are smaller than the information they confer, and therefore appear safe.

In the second study, we focus on broader systematic effects which have a direct effect on the
measured running. Here we optimise the number of bins for extraction of the running slope, as
specified in Table 7 (for layer 4 X0). This binning is more consistent with the small number of
parameters we wish to extract, the bin width grows with increasing radius to compensate the
diminishing statistics, and any noise associated with fluctuations at the supressed intermediate
bin boundaries, which we treated in our first study, is reduced. Here, in addition to the
statistical errors, we also include the full matrix of systematic errors which is specified in
Table 9. The fit values of b∗ for each layer are shown in Fig. 8. The results are shown separately
for the two sides, and for the two homogeneous data sets, 1993-4 and 1995. The uncorrected
slope shows only small statistical fluctuations due to the rebinning in each layer. The corrected
slope is close to the uncorrected result in layers 1 − 6 X0, then shows a steady decrease with
increasing depth in the calorimeters. Layer 0 X0 shows a strong deviation from the uncorrected
result, in the opposite sense. Consistent with Figure 6, for 1993-4 data the deviation on the Left
side preceeds that on the Right by almost exactly one layer, due to the presence of the extra
preshowering material of the microvertex cables. In the 1995 data the observed deviations are
similar on the two sides, reflecting the fact that the preshowering material is then symmetric.

These results indicate that the corrected values of b∗ are consistent with the uncorrected values,
within the assigned systematic error, for the broad region covering layers 1−6 X0. This is true
for both sides, and for all datasets.

Nonetheless, the Left side appears to exhibit a pattern of deviations consistent with a residual
depth-dependent effect, particularly in the more statistically significant 1993-4 data. Due to the
back-to-back nature of Bhabha events, the two sides do not contribute independent statistical
information about the running. We therefore choose to derive our final results from the Right
side alone. Even though in 1995 the Right data is affected by extra preshowering material to
an extent similar to the 1993-4 Left data, we consider that the gain of statistical precision in
using this data outweighs the risk of any potential increase in systematic error. We also choose
the anchors in layer 4 X0 to correct our final results, since this layer lies in the center of the
safe region, where the corrected and uncorrected results are most consistant. In some sense
this decision is simply prophylactic: all results within the safe anchoring region are consistent
within the assigned errors, corrected and uncorrected, on both sides of the detector, and for all
datasets.

7 Systematic uncertainties

Having discussed how we ensure that our anchoring corrections are chosen from a safe region
of the detector, we now quantify the residual errors we attribute to these anchors, as well as all
other systematic errors we identify as affecting the measurement. The analysis of these errors
closely follows their treatment in the SiW luminosity analysis [12]. The discussion here focuses
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on those considerations specific to the current measurement, and quantifies their effect on the
extracted value of b∗. The systematic uncertainties are grouped into classes, summarized in
Table 4, and discussed in detail below.

7.1 Anchoring errors

This error class includes all the uncertainties connected with the anchoring procedure described
in section 5. Biases on the radial coordinate can directly affect the shape of the t distribution. In
particular a bias on the reconstructed position in the central part of the acceptance, behind the
dead material, can produce a significant error. As mentioned in Section 2, a bias in the central
region of 70 µm would double the expected apparent running or reduce it to zero depending on
the sign of the bias.

Shifts in the anchors can arise either through the measured value of Roff or through the
determination of the pad boundary bias, δRRφ. The measurement of Roff is affected by pad
gain fluctuations and departures from the Gaussian model used for extracting the pad boundary
image. A global uncertainty in δRRφ has negligable effect on the current measurement, but
uncertainty in its radial dependence must be considered.

The observed Roff is affected by fluctuations in the individual pad gains. We have checked
these effects directly on data, by studying Roff for each of the 32 azimuthal divisions of the
calorimeters. We assign the statistically expected shift in the mean caused by the azimuthal
variations, (Roff)RMS/

√
32, as a systematic error in the anchors, due to pad gain variations.

(rgk: We need to quantify the contribution of this error component)

Fig. 3 shows that a Gaussian resolution does not perfectly describe the tails of the distribution
from which we extract the pad boundary image. To the extent that this image maintains an
odd symmetry about the apparent pad boundary, its non-Gaussian behaviour does not affect
the determination of Roff as can be seen from the close agreement of the data points and the
fitted curve near the pad boundary. We have also considered a model in which the apparent pad
boundary is taken as the median of the observed resolution function. The difference between
the two models is assigned as a systematic error of the fit method, when it is larger than the fit
statistical error, otherwise the latter is kept as the estimated error. (rgk: We need to quantify
the contribution of this error component)

The determination of the pad boundary bias in the test beam was carried out at a radial
position close to the inner acceptance cut to provide optimal information for the luminosity
determination. In this analysis we have a greater dependence on knowing the pad boundary
bias throughout the detector. The geometrical bias due to R − φ pads is expected to scale as
1/R, thus decreasing at a greater radius of pad curvature. Therefore we have scaled the bias
estimated using the test beam results, but assign an additional systematic error equal to 50%
of the expected bias to account for possible deviations from this behaviour. (rgk: We need to
quantify the contribution of this error component)

These uncertainties have been incorporated in the covariance matrix and their effect on the
fitted slope have been assessed. (rgk: Whoa, the text seems to contradict itself concerning
whether the anchoring errors are included in the covariance matrix, or whether they are taken
as additional contributions to the fit error. This must be clarified) These uncertainties have been
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taken as additional quadratic contributions to the fit error and have been determined separately
for the 1993-94 and 1995 data. We obtain 11(13)×10−5/GeV2 for the Right (Left) side in 1993-
94 data and 13(18) × 10−5/GeV2 for the Right (Left) side in 1995 data, corresponding to an
effective anchoring error of about 4 µm.

7.2 Dead material

To cover in a conservative way possible effects of the dead material we did a few direct tests
using the data itself. The amount of preshowering material is maximum in the middle of the
accepted radial range, as is reflected in the σa distribution shown in Figure 5. We have thus
defined two regions:

• CLEAN region, R ≤ 8.2 cm and R ≥ 11.7 cm, corresponding to the first 4 pads starting
from the inner radial cut and the last 6 pads close to the outer cut;

• OBSCURED region, 8.2 < R < 11.7 cm, corresponding to the central 14 pads.

The fitted slopes determined separately in the two regions are given in Table 3. We see that
the results obtained in the CLEAN region are quite close to the results of the fit on the full
acceptance, given in Tables 1-2. (rgk: Tables 1-2 could be dropped if the total acceptance result
is added to Table 3) Moreover the independent values obtained in the OBSCURED region are
consistent within the statistical errors. It is natural to expect a possible extra pad boundary bias
in the bad region, particularly on the Left side. We have checked for its presence, by introducing
a new parameter x in the fit, related to this assumed extra bias using two alternative models:

• Box-model, a naive choice assuming a constant extra bias within the bad radial region
and no extra bias outside it. Here x is the constant extra bias.

• W-model, the extra bias δRextra is assumed to follow the pattern of the apparent shower
width σa versus R:

δRextra = x
σa(R) − σa(Rin)

σmax − σa(Rin)
(16)

where Rin is the inner acceptance cut, where σa is minimum, and σmax is the maximum
value of σa, which is reached near the centre of the detector (R ≈ 10.2 cm). So δRextra = x
when σa(R) = σmax.

No evidence for an extra bias is found under either of the two hypotheses. We take the statistical
sensitivity of the check as a systematic uncertainty, quantified as the additional contribution to
the error on the slope generated by allowing the possibility that such an extra bias might exist.
We obtain 10(18)×10−5/GeV 2 for the Right (Left) side in 1993-94 data and 27(30)×10−5/GeV 2

for the Right (Left) side in 1995 data. Notice that such uncertainties cover the observed shifts
between fits in the restricted CLEAN region and in the full acceptance in each of the various
cases.

The estimated error for the Left side is about twice that for the Right side in 1993-94 data.
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7.3 Position resolution

The radial resolution at pad boundaries in the clean acceptance near the inner edge of the
detector has been measured using the test beam to be 130 µm. The apparent resolution at
the outer edge and in the central portion of the detector, behind the bulk of the preshowering
material, is degraded approximately by a factor of 2 to 2.5, according to the pattern of Figure 5.
The Monte Carlo simulation includes a radial dependence accounting for this variation. The
impact of any unaccounted degradation of the radial resolution as a function of radius is tiny.
For example, to get an effect the same size as the running, the resolution behind the material
would have to be wrong by 2 mm. We conservatively assessed the uncertainty related to the
radial resolution by dividing the acceptance into two radial bins and calculating the full effect
of the resolution flow on the slope. It amounts to 4(10)× 10−5/GeV2 for the Right (Left) side
in 1993-94 data and 7(9)× 10−5/GeV2 for the Right (Left) side in 1995 data. The contribution
of the resolution flow across the acollinearity cuts is negligible in comparison, amounting to
1 × 10−5/GeV2 in all cases.

The resolution on the reconstructed azimuthal coordinate is not critical because of the cylindri-
cal symmetry of the detector. It only enters through the cuts on the acoplanarity distribution
as a resolution flow effect, which is taken into account by the detector simulation. Radial vari-
ation of the azimuthal resolution and unaccounted non-Gaussian tails give uncertainties on the
slope smaller than 10−5/GeV2 and have been neglected.

7.4 Acollinearity bias

The acollinearity distribution, with the selection cuts |∆R| ≤ 2.5 cm, is not corrected using
anchors as is the radial distribution. Therefore it is subject to biases of the order of the anchors
themselves. In the worst case there could be a first order effect causing a net gain or loss
of events at both the positive and the negative ∆R cut. This is conservatively estimated by
considering a bias with absolute value ∆Rbias = 30 µm, which is the maximum reached by the
anchors. This corresponds to an uncertainty on the slope of 3 × 10−5/GeV2.

7.5 Metrology

The detector geometry was carefully determined and monitored for the luminosity measurement
[12]. The most crucial quantity in that analysis was the inner radius of the calorimeters, since
the internal geometry of the Si wafers is inherently excellent. This analysis is much less sensitive
to the absolute radial scale, and it would require a radial shift of about 0.5 mm to mimic the
expected α running. Even without averaging over the measurements of the two sides, the inner
radii are known with a precision of 7µm, which gives an error on the slope of only 3×10−5/GeV2.

In operating conditions the thermal effects also contributed variations to the nominal radial
dimensions of the detector on the order of 2 − 10µm. These were calculated independently for
each data set, according to the average temperature measured by thermistors located on each
detector layer. Such thermal effects give contributions to the slope of 1−4×10−5/GeV2, which
have been considered correlated between all the data samples.
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This analysis is insensitive to longitudinal metrology errors. In fact an error in the longitudinal
separation between the Right and Left calorimeters would be equivalent to a shift in the z po-
sition of the interaction vertex which has no effect on the slope. Also the inter–layer separation
gives negligible uncertainties: for a change of 100µm in the spacing between layers, the effect
on the slope is below 10−5/GeV2 for all layers considered (1 − 10X0).

7.6 Beam parameters

The geometry of the colliding beams with respect to the detector can have quite important
effects on the apparent slope. The size of the running is comparable to the effect of an uncor-
rected transverse offset of the beams of 4 mm or a beam angular divergence of 1.4 mrad. These
values are much larger than those we experienced. Moreover we were able to safely determine
such parameters from the data.

The uncertainties related to the beam parameters are geometric effects which modify the radial
acceptance and can be adequately calculated analytically by assuming a simple 1/θ3 angular
distribution. Here, with regard to the slope of the radial distribution, it is enough to work
out the estimates by dividing the radial acceptance into two bins. In this way one gets a
conservative estimate, since the isolation cuts, which are neglected analytically, considerably
decrease the variations calculated from the acceptance cuts alone.

The transverse beam offset is measured run-by-run with a precision better than 10 µm and
gives a negligible uncertainty on the fitted slope. The beam tilt is the most important effect.
Its two components are determined run-by-run as the difference of the eccentricities of the
unscattered beams as they pass through the bore of each calorimeter. These eccentricities are
measured by the azimuthal modulation of the Bhabha intensity, and the statistical accuracy
with which they can be determined is 200−300 µm for typical runs. For the nine data sets the
beam tilt contributes 1 − 3 × 10−5/GeV2 to the uncertainty in the slope. These errors have
been conservatively taken twice: both correlated and uncorrelated. To cover the possibility of
rapid tilt variations, on a time scale shorter than an individual run, we have conservatively
taken as an additional uncertainty the slope variation corresponding to setting the beam tilt to
zero. Note that random variations in the angles of the electron and positron beams will appear
as additional contributions to the beam divergence, which is considered as an independent
parameter. In order for the tilts to have an effect on the acceptance which is not included in
the divergence correction, the trajectories of the incoming positron and electron beams must
change in a correlated manner. They range from 1 × 10−5/GeV2 for the largest sample (94-b)
to 10 × 10−5/GeV2 in the worst cases. We have taken such numbers as uncorrelated errors,
with an additional common correlated systematic equal to 1× 10−5/GeV2.

The transverse beam size and divergence give effects similar to the radial resolution. They can
be calculated by expressing the radial acceptance variation due to the resolution flow. The
uncertainty due to the beam size is conservatively estimated by taking the full size of the effect:
its contribution to the slope is below 1 × 10−5/GeV2 and has been neglected. The uncertainty
on the beam divergence, estimated by comparing two independent determinations, ranges from
≈ 100 µrad for 1993-94 data and ≈ 130 µrad for 1995 data. The resulting uncertainty on
the slope is 1 × 10−5/GeV2 and 2 × 10−5/GeV2 respectively. We have taken these errors as
uncorrelated but additionally a correlated term equal to 1 × 10−5 has been considered.
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The longitudinal position of the beam spot has a constant effect on the radial acceptance so
gives no contribution to the slope. The same holds for the longitudinal size of the beam spot.

The uncertainties estimated in this way have been checked with the results of Monte Carlo
simulations where one parameter at a time can be varied. In this case the isolation cuts are
included, at the price of some statistical limitation. The results are consistent.

7.7 Energy Response

The essential problem here is how the pre-showering material degrades the energy response and
causes events to be lost from the accepted sample. Uncertainties due to the energy response have
been assessed by varying the parameters in the detector simulation within the precision they
have been estimated from the data. They include the Gaussian width of the energy response
function, the exponential low-energy tail, the nonlinearity and the method used to extrapolate
the energy resolution to lower energies. We determined the variation in the fitted slope in a
conservative way, by dividing the radial acceptance into two bins and then by changing in turn
each parameter in the simulation of the outer bin, leaving unchanged the parameters for the
inner bin. Then we took the sum in quadrature of all the variations. The dominant uncertainty
is caused by the low-energy tail of the response function, which is generated by events that
shower very late in the detector, events not fully contained and events with electrons and
positrons that scatter off upstream material. The resulting uncertainty is 8 × 10−5/GeV2 for
both the Right and the Left calorimeter.

7.8 Accidental background

Off-momentum electrons and positrons generated by beam-gas scattering generate the majority
of single showers in the luminometer. Accidental coincidences between background clusters in
the Right and Left calorimeters can occasionally produce events which are selected as Bhabha
scatterings, although in general these events are rejected by the minimum energy cuts or fail
the acollinearity cuts. This background was studied by special triggers including random bunch
crossings and delayed coincidences. The background fractions were found to vary between 0.1
and 0.6× 10−4 depending on the data set [12]. We have conservatively estimated the effect on
the slope by dividing the acceptance into two radial bins and assuming that the background is
concentrated in the inner bin. The radial distribution of background is indeed sharply peaked
at low radius. To account for the enlarged acceptance used in this analysis we increased the
background fractions by 50 %, which covers the variations observed by studies of the background
distributions. The effect on the slope is a slight decrease between 1 and 5 × 10−5/GeV2 which
has not been corrected but taken as an uncertainty correlated between the data samples.

The accidental overlap of a background cluster with a Bhabha event can also change the values
of reconstructed quantities, modifying the acceptance. This has been evaluated by incorpo-
rating the measured background into the detector simulation, by adding to BHLUMI events
background clusters with rates determined from random triggers. Likewise we have also com-
bined the measured background with data. In both cases the resulting shift in the slope is
smaller than 10−5/GeV2 and has been neglected.
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7.9 Biases of the method

The reconstructed t has a small positive bias, due to initial-state radiation, with respect to the
exchanged four-momentum between the electron and positron line. From a study of BHLUMI
Monte Carlo events this is found to be almost zero at the inner acceptance cut, increasing to
about 0.1 GeV2 at the outer cut. If we were to correct the average t values for this radiation, it
would give a small increase of the slope by +5×10−5/GeV2. The corresponding small reduction
of the t range, however, acts to cancel this effect when determining the variation of the coupling
from equation (8). Therefore we have not corrected the slope for this effect and neglected its
small uncertainty.

The linear approximation to the t dependence expressed by equation (7) has been checked with
a theoretically–based logarithmic dependence for the running of the effective coupling. We have
no statistical sensitivity to deviations from linearity, although the linear approximation results
in a small positive bias with respect to the assumed logarithmic dependence. This has been
studied by Monte Carlo and is +12×10−5/GeV2 on the b slope at peak energy, taken as a fully
correlated systematic uncertainty. For off-peak data sets this is convoluted with effects of Z
interference to give slightly different values depending on energy, as reported in table 4.

7.10 Summary of systematic errors

The dominant systematic errors are those related to anchoring and dead material, described in
sections 7.1 and 7.2.

The experimental systematic uncertainties are summarized in Table 4. The final experimental
error correlation matrix (including the statistical errors) is given in Table 5. The correlations
reach at most 10 %. The classification of the detailed sources of error into correlated and
uncorrelated components given in Table 4 does not reveal the complete pattern of correlations
embodied in the full correlation matrix. In that table the errors classified as correlated are fully
correlated between all data samples, while those classified as uncorrelated are often correlated
within a given year, but uncorrelated between years.

8 Theoretical uncertainties

It is important to assess the theoretical uncertainties implied by the BHLUMI Monte Carlo. In
fact a reliable determination of the running coupling constant from equation (2) needs a precise
knowledge of the radiative corrections.

The theoretical uncertainty of the BHLUMI calculation of small angle Bhabha scattering has
been extensively studied for the event selections of LEP experiments. The fractional theoretical
error is 6.1 × 10−4 for the integrated cross section at LEP1 energy [13, 18] which was relevant
for the determination of the integrated luminosity. Alternative existing calculations have been
widely cross-checked with BHLUMI [13]. Moreover the extensive comparisons between data and
the predictions of many features predicted by the Monte Carlo by the four LEP collaborations
decrease the chances that it contains significant residual technical imperfections. Therefore
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the estimate of the theoretical uncertainty of BHLUMI is solid. BHLUMI does not include
diagrams with extra light pairs (e+e−, µ+µ−). Their contribution was calculated explicitly
for the (idealized) OPAL acceptance, giving a fractional correction of −4.4 ± 1.4 × 10−4 [19].
With this correction the theoretical error on the OPAL integrated luminosity was reduced to
5.4 × 10−4, dominated by uncertainties on vacuum polarization and photonic corrections.

We have studied the uncertainty on the slope of the differential cross section in a conservative
way, by degrading the precision of BHLUMI for the last perturbative order. Since BHLUMI
includes completely the O(α2L2) terms, we have compared it to the exact O(α) calculation of
the former OLDBIS Monte Carlo programme [20]. This is based on the calculation of an inde-
pendent group [21], but is included within the BHLUMI package. Thus this check also covers
aspects of the technical precision. BHLUMI gives access to many intermediate weights which
compose the final calculation, so that we could also check several different approximations.

We did this study by using a slightly modified version of the idealized model of the OPAL
detector, which is contained in the BHLUMI package (subroutine TRIOSIW). We generated
the events within a safely enlarged angular region to protect against loss of visible events. This
code was used also for the work of [13]. Smearing effects are neglected and an ideal beam is
assumed. Nearby particles are combined by a clustering algorithm which has a window matched
to the experimental resolution. The energy is defined by summing all the particles inside the
isolation cuts on each calorimeter. The position variables R and φ are defined as the coordinates
of the highest energy particle reconstructed on each side. We applied all the isolation cuts listed
in section 4 to these reconstructed variables. The differential cross section obtained at different
perturbative orders is shown in Figure 10 normalized to the reference BHLUMI cross section.
Here vacuum polarization, Z-exchange interference and s-channel photon interference have been
switched off. The Born cross section is reduced by about 5 − 15 % by radiative corrections,
depending on the polar angle. The cross section at O(α) is slightly lower than the reference
but in general agrees within 1 %, except for the upper edge of the angular acceptance where
the difference is close to 2 %. The O(α)exp calculation is almost identical to the reference.

We fit the ratio of calculations at different orders and determine the shift in the slope, δb, which
corresponds to using these alternatives as the reference for our fit to the data. The results are
shown in Figure 11 and are:

OLBIS[O(α)]/BHLUMI ⇒ δb = −29 ± 21 × 10−5/GeV 2

O(α)exp/BHLUMI ⇒ δb = +6 ± 13 × 10−5/GeV 2

We take half the result of the OLBIS[O(α)]/BHLUMI fit as a conservative estimate of the
systematic error related to neglected photonic corrections (14 × 10−5/GeV2). The size of the
window used by the cluster algorithm (on R and φ) has been varied over a large range to verify
the stability of the result. The result of the O(α)/BHLUMI fit moves at most by 3×10−5/GeV2,
while the O(α)exp/BHLUMI fit is unchanged. We point out that the acollinearity cut applied by
our selection is very effective in reducing the importance of the photonic radiative corrections.
An alternative idealized selection (similar to the ALEPH standard selection, named SICAL
in [13]) without such a cut would result in a systematic error of 25 × 10−5/GeV2 according to
the same procedure.

The interference with the Z exchange amplitude in the s-channel is a small correction, desig-
nated δZ in equation (2), which is not factorized with respect to the main contribution and
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the running coupling constant. It is energy dependent, vanishing at
√

s = mZ and changing
sign across the Z mass. In BHLUMI it is calculated to O(α)exp with the vacuum polarization
correction included. Alternatively it can be obtained to the same order but without the vac-
uum polarization correction, at the Leading-Log level or at the Born level. We have studied
the effect of uncertainties on this piece by degrading the default calculation to the Born ap-
proximation for δZ . We generated large samples of events at three different energy points: the
Z-peak energy (set to

√
s = 91.1 GeV) and energies offset by ±2 GeV. Radiative corrections on

Z interference are found to shift the fitted slope by +31 ± 15 × 10−5/GeV2 at
√

s = 89.1 GeV
and −20 ± 15 × 10−5/GeV2 at

√
s = 93.1 GeV with respect to the result obtained with the

Born calculation. We have checked also the effect of the inclusion of vacuum polarization in
the δZ term, as this subtle effect could in principle perturb the asserted cleanliness of the mea-
surement. We find ±7 × 10−5/GeV2 for the induced shifts on the fitted slope, much less than
the effect of photonic corrections. The estimated theoretical uncertainties are summarized in
Table 6.

9 Results

As explained in Section 6, our final results are based solely on the angular distribution observed
in the Right calorimeter, and on radial coordiates corrected using the anchoring procedure
described in Section 5. The back-to-back nature of Bhabha events implies that the two sides of
the detector do not provide independent statistical information concerning the running of α, and
the decision to use only the Right calorimeter is based on the desire to reduce possible unassessed
systematic error. Similarly, the decision to use corrected coordinates has little import, since
our faith in the anchoring requires consistency between the corrected and uncorrected results.
Changing any of these choices would shift our result by no more than 10% of its error.

For our final fits the radial distribution is binned as specified by table 7. The numbers of data
and Monte Carlo events for the largest subsample (94b) are reported in table 8. There the
anchoring corrections applied bin-by-bin are also given, together with their errors. Point to
point errors are completely described by the correlation matrix in Table 9. Each dataset is
fitted in an analogous way and the results are reported in table 10. The full systematic errors
are given here, which are partly determined from point-to-point errors (from anchoring and MC
statistics) and partly are assigned directly to the slope, as described in Section 7. Table 10 also
shows the rescaling factors ∆t∗/∆t for the slope, introduced in relation (9), which are used to
combine the results.

Our selection contains a small irreducible physics background from the process e+e− → γγ. Its
cross section within our idealized acceptance is found to be 16.9 pb at 91.1 GeV with a Monte
Carlo generator including O(α3) terms [22]. The correction to the b∗ slope is −5.5×10−5/GeV2,
practically constant with respect to our range of centre-of-mass energies. After this correction
the combined value of the effective slope b∗ is:

b∗ = (201 ± 29 ± 25) × 10−5/GeV2

where the first error is statistical and the second the experimental systematic. The statistical
significance of the measurement is 6.8 σ, which becomes 5.2 σ considering the systematic errors.
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The result is illustrated by Fig. 12 for the combined data sample. The error bars are statistical
only, since many of the systematic errors are correlated in radius and apply directly to the slope.
The data are clearly incompatible with the hypothesis of fixed coupling (line R = 1). Moreover,
the data show a steeper slope than the expected behaviour for vacuum polarization involving
only leptons. The fitted linear dependence agrees well with the Standard Model prediction as
obtained by BHLUMI, which parameterizes the hadronic contributions according to Burkhardt-
Pietrzyk [16]. The newer parameterization [3] by the same authors or the alternative [2] are
indistinguishable from [16] in our t range.

The effective slope gives a measurement of the variation of the coupling α(t) from equation (8).
By correcting for the small bias of the linear approximation, given in table 4 one gets:

∆α(−5.96 GeV2) − ∆α(−1.78 GeV2) = 0.00394± 0.00062 ± 0.00045

Our result is compatible within 1 σ with the Standard Model prediction [16], which gives
δ (∆α) = 0.00466 for the same t interval.

If we subtract the precisely known theoretical prediction for the leptonic contribution, δ(∆αlep) =
0.00202, from the measured result, we can determine the hadronic contribution as:

∆αhad(−5.96 GeV2) − ∆αhad(−1.78 GeV2) = 0.00193 ± 0.00062 ± 0.00045

This has a statistical significance of 3.1 σ, reduced to 2.5 σ considering also the systematic
errors. This is currently the most significant experimental observation of the running of the
QED coupling in a single experiment and also the cleanest when theoretical uncertainties are
properly considered.

10 Conclusions

The scale dependence of the effective QED coupling α(t) has been measured from the angular
spectrum of small angle Bhabha scattering using the precise OPAL Silicon-Tungsten calorime-
ters. Despite the narrow accessible t range, the method has high sensitivity due to the high
statistics and purity of the data sample. The challenging aspect of the analysis is controlling
the residual bias of the reconstructed radial coordinate of Bhabha electrons in the detector
to a level below ≈ 10 µm uniformly throughout the acceptance. From a theoretical point of
view the environment represents an almost ideal measurement. In fact for this kinematic range
the process is almost purely QED, Z interference is very small and the dominant diagram is
t-channel single-photon exchange, while s-channel photon exchange is negligible. Small angle
Bhabha scattering is one of the most precisely calculable processes. We verified that there is
no significant disturbance from photonic radiative corrections in a conservative way and found
that the radiative corrections are almost decoupled from the t-slope, at least for the OPAL
selection, which strongly reduces non-collinear final states.

We determined the effective slope of the Bhabha momentum transfer distribution which is
simply related to the average derivative of ∆α as a function of t in the range 2 GeV2 ≤
−t ≤ 6 GeV2. The observed t-spectrum agrees with the predicted behaviour of the standard
Burkhardt-Pietrzyk parameterization within 1 σ.
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This measurement is one of only a very few experimental tests of the running of α(t) in the
space-like region, where ∆α has a smooth behaviour. We obtain the strongest direct evidence
for the running of αQED ever achieved in a single experiment, with significance above 5σ.
Moreover we report the first clear experimental evidence for the hadronic contribution to the
running, with a significance of about 3σ.
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Dataset Right b∗ slope Left b∗ slope
×10−5/GeV2 ×10−5/GeV2

93 −2 139. ± 100. 94. ± 100.
93 pk 211. ± 100. 268. ± 100.
93 +2 153. ± 102. 159. ± 102.
94 a 124. ± 105. 58. ± 105.
94 b 252. ± 50. 217. ± 50.
94 c 16. ± 184. 105. ± 183.
95 −2 247. ± 100. 199. ± 100.
95 pk 251. ± 123. 188. ± 123.
95 +2 47. ± 100. 58. ± 100.

Average 192. ± 30. 171. ± 30.
χ2/d.o.f. 5.9/8 5.1/8

Table 1: Fitted slope for each data subsample and average for the Right and the Left radial
distributions. The errors are data and Monte Carlo statistical errors summed in quadrature.

d.o.f. =22 Right side Left side
1993-94 1995 1993-94 1995

(Anchoring correction) (-12.) (+19.) (-9.) (+18.)
b∗ slope (×10−5/GeV2) 199. ± 35. ± 11. 173. ± 61. ± 13. 180. ± 35. ± 13. 144. ± 61. ± 18.
χ2

unc 45.7 21.4 107.4 32.1
χ2

cor (stat. errors) 35.9 33.8 117.1 45.9
χ2

cor (stat.+syst. errors) 14.7 18.9 38.6 22.0

Table 2: Results of the combined fits to the two homogeneous data sets for the Right and the
Left radial distribution, giving the anchoring correction for the slope, the corrected slope with
statistical and (anchoring) systematic error and the fit χ2 for the uncorrected and the corrected
distributions with only statistical or statistical plus systematic errors and their covariance
matrix.
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Radial range Right b∗ slope (×10−5/GeV2) Left b∗ slope (×10−5/GeV2)
1993-94 1995 All 1993-94 1995 All

CLEAN 195. ± 40. 202. ± 70. 196. ± 35. 168. ± 40. 149. ± 70. 163. ± 35.
OBSCURED 207. ± 76. 82. ± 134. 177. ± 66. 225. ± 76. 124. ± 134. 200. ± 66.

Table 3: Fitted slope separately for the CLEAN and the OBSCURED radial range of accep-
tance, for homogeneous data sets. Both the Right and the Left side results are given. The
errors are statistical only.

Uncertainty 93 -2 93 pk 93 +2 94a 94b 94c 95 -2 95 pk 95 +2
Anchoring

uncorrelated 3. 3. 3. 3. 3. 3. 8. 8. 8.
correlated 11. 11. 11. 11. 11. 11. 11. 11. 11.

Dead Material
uncorrelated 0. 0. 0. 0. 0. 0. 25. 25. 25.

correlated 10. 10. 10. 10. 10. 10. 10. 10. 10.
Radial Metrology

uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.
correlated 3. 3. 3. 3. 3. 3. 3. 3. 3.

Radial Thermal
uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.

correlated 1. 1. 1. 1. 1. 1. 3. 3. 3.
Background

uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.
correlated 5. 4. 2. 1. 1. 2. 1. 1. 1.

Energy
uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.

correlated 8. 8. 8. 8. 8. 8. 8. 8. 8.
Beam parameters

uncorrelated 5. 9. 6. 2. 2. 4. 4. 7. 9.
correlated 2. 2. 2. 2. 2. 2. 2. 2. 2.

Radial resolution
uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.

correlated 4. 4. 4. 4. 4. 4. 7. 7. 7.
Acollinearity bias

uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.
correlated 3. 3. 3. 3. 3. 3. 3. 3. 3.

M.C. statistics
uncorrelated 21. 21. 21. 38. 21. 65. 21. 21. 21.

correlated 0. 0. 0. 0. 0. 0. 0. 0. 0.
Linear approx. bias

uncorrelated 0. 0. 0. 0. 0. 0. 0. 0. 0.
correlated 8. 12. 16. 12. 12. 12. 8. 12. 16.

Sum
uncorrelated 22. 23. 22. 38. 21. 66. 34. 35. 35.

correlated 20. 22. 24. 22. 21. 22. 21. 23. 25.

Total Systematic error 29. 32. 33. 44. 30. 69. 40. 41. 43.

Table 4: Summary of the experimental systematic uncertainties on the measurement of the
effective slope b∗ for the nine data sets on the Right side. They are broken down into the com-
ponents correlated and uncorrelated among the data sets. All errors are in units of 10−5/GeV2.
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Sample 93 -2 93 pk 93 +2 94 a 94 b 94 c 95 -2 95 pk 95 +2
93 -2 1.00 0.04 0.04 0.04 0.07 0.02 0.04 0.03 0.04
93 pk 0.04 1.00 0.05 0.04 0.08 0.02 0.04 0.04 0.05
93 +2 0.04 0.05 1.00 0.05 0.09 0.03 0.04 0.04 0.05
94 a 0.04 0.04 0.05 1.00 0.08 0.02 0.04 0.03 0.04
94 b 0.07 0.08 0.09 0.08 1.00 0.04 0.07 0.07 0.09
94 c 0.02 0.02 0.03 0.02 0.04 1.00 0.02 0.02 0.03
95 -2 0.04 0.04 0.04 0.04 0.07 0.02 1.00 0.08 0.10
95 pk 0.03 0.04 0.04 0.03 0.07 0.02 0.08 1.00 0.09
95 +2 0.04 0.05 0.05 0.04 0.09 0.03 0.10 0.09 1.00

Table 5: The experimental correlation matrix for the nine data sets.

δb × 10−5/GeV 2

Error source peak peak - 2 peak + 2

Photonic corrections 14. 14. 14.
Z-interference 7. 16. 14.
Total 16. 21. 20.

Table 6: The estimated theoretical uncertainties on the measurement of the effective slope b∗,
at centre-of-mass energies of 91.1, 89.1, 93.1 GeV.

Bin Rin Rout −tin −tout < −t >
(cm) (GeV2)

1 7.2584 8.2665 1.80 2.34 2.05
2 8.2665 9.2746 2.34 2.95 2.62
3 9.2746 10.7868 2.95 3.98 3.41
4 10.7868 11.7949 3.98 4.76 4.35
5 11.7949 13.3071 4.76 6.06 5.36

Table 7: Bin definitions for the radial distribution. The corresponding −t and < −t > values
are determined assuming a reference energy

√
s = 91.1 GeV.

Ratio R = Ndata/NMC

Bin Ndata NMC anchoring corrected stat.err. syst.err.
correction value (data) (MCstat.) (anchoring)

1 1310496 1313450 -0.00019 0.99756 0.00087 0.00040 0.00045
2 927931 931473 +0.00082 0.99701 0.00103 0.00047 0.00052
3 941500 938667 -0.00181 1.00121 0.00103 0.00047 0.00040
4 431654 430794 +0.00116 1.00316 0.00153 0.00068 0.00064
5 458295 455492 -0.00032 1.00583 0.00149 0.00067 0.00039

Table 8: Detailed fit inputs for the largest data subsample (94b). Each row corresponds to a
radial bin and gives: number of data and MC events normalized to the data sample; their ratio
and the applied anchoring correction; errors attributed to the points: data and MC statistical
error and systematic error of the anchoring procedure.
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Bin 1 2 3 4 5

1 1.00 -0.08 0.01 0.01 0.01
2 -0.08 1.00 -0.05 0.01 0.00
3 0.01 -0.05 1.00 -0.05 0.00
4 0.01 0.01 -0.05 1.00 -0.03
5 0.01 0.00 0.00 -0.03 1.00

Table 9: Error correlation matrix for the 94b radial distribution given in the previous table.

Dataset
√

s ∆t∗/∆t b∗ slope
(GeV) ×10−5/GeV2

93 −2 89.4510 1.021 132. ± 100. ± 29.
93 pk 91.2228 0.981 179. ± 99. ± 32.
93 +2 93.0362 0.943 163. ± 102. ± 33.
94 a 91.2354 0.981 140. ± 100. ± 44.
94 b 91.2170 0.981 275. ± 47. ± 30.
94 c 91.2436 0.981 −18. ± 175. ± 69.
95 −2 89.4416 1.021 271. ± 100. ± 40.
95 pk 91.2860 0.980 277. ± 123. ± 41.
95 +2 92.9720 0.945 80. ± 100. ± 43.

Average 207. ± 29. ± 25.
χ2/d.o.f. 7.4/8 6.6/8

Table 10: Fitted b∗ slope for each data subsample and average, for the radial distribution
specified in tables 7 and 8. The average centre-of-mass energy of each subsample is also reported,
together with the factor ∆t∗/∆t which rescales the fitted slope to the reference energy value√

s = 91.1 GeV. The first error is statistical, the second is the full systematic. Error correlations
are given in table 5.
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Figure 1: The calculated material traversed by particles originating at the interaction point
as a function of calorimeter radius for the 1993–94 detector configuration. The solid curve
corresponds to the left, the dotted curve to the right side. The larger amount of material on
the left is due to the passage of cables from the OPAL microvertex detector. The arrows show
the location of the acceptance definition cuts on shower radius.
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Figure 3: Pad boundary images obtained for the Si layer at 4 X0 at three different radial posi-
tions corresponding to the inner edge, the middle portion and the outer edge of the acceptance.
The solid curve shows the fitted function, whose parameters Roff and σa are given.
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Figure 4: The total net bias (anchor) as a function of radius for the Right and the Left radial
coordinate determined for the Si layer at 4 X0, for the combined 1993-94 data sample. The full
error bars show the total error, the inner bars the statistical component.
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Figure 7: Ratio of data and Monte Carlo (with ∆α set to zero) for the combination of all LEP1
data, for the Right and Left sides. Each point corresponds to a bin of one radial pad. The solid
triangles show the data corrected with anchors in layer 4 X0, the empty circles the uncorrected
data (slightly shifted for clarity), with statistical errors in both cases. The line shows the fit
result.

34



OPAL

-200

-100

0

100

200

300

400

-1 0 1 2 3 4 5 6 7 8 9 10 11
Si-Layer Depth (X0)

b 
sl

op
e 

(1
0-5

/G
eV

2 )

1993-94 Data (Right)
-200

-100

0

100

200

300

400

-1 0 1 2 3 4 5 6 7 8 9 10 11
Si-Layer Depth (X0)

b 
sl

op
e 

(1
0-5

/G
eV

2 )

1993-94 Data (Left)

-200

-100

0

100

200

300

400

-1 0 1 2 3 4 5 6 7 8 9 10 11
Si-Layer Depth (X0)

b 
sl

op
e 

(1
0-5

/G
eV

2 )

1995 Data (Right)
-200

-100

0

100

200

300

400

-1 0 1 2 3 4 5 6 7 8 9 10 11
Si-Layer Depth (X0)

b 
sl

op
e 

(1
0-5

/G
eV

2 )

1995 Data (Left)

Figure 8: Fitted slope as a function of the anchoring layer for homogeneous data combina-
tions. The open circles show results obtained from uncorrected radial distributions, with the
hatched band representing the (correlated) statistical error. The solid triangles show results
from distributions corrected by anchoring, with the error bars representing only the systematic
errors.
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Figure 9: Difference between corrected and uncorrected χ2 (d.o.f.=22) as a function of the
anchoring layer for the homogeneous data sets. Only statistical errors are considered.
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Figure 10: Differential cross section as a function of the polar scattering angle calculated
by the BHLUMI package for the OPAL selection in different perturbative approximations,
normalized to the reference BHLUMI calculation. Vacuum polarization, Z-interference and
s-channel photon contributions are switched off.
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Figure 11: Differential cross section as a function of the polar scattering angle calculated by
the BHLUMI package for the OPAL selection with exact (OLDBIS) or exponentiated O(α)
matrix element, normalized to the reference BHLUMI calculation. Vacuum polarization, Z-
interference and s-channel photon contributions are switched off. The fitted line is used to
conservatively assess the theoretical uncertainty.
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Figure 12: |t| spectrum normalized to the BHLUMI theoretical prediction for a fixed coupling
(∆α = 0). The points show the combined LEP1 data with statistical error bars, the solid
line is our fit. The horizontal dot-dashed axis would be the prediction if α were fixed. The
dashed curve is the prediction of running α determined by vacuum polarization with only virtual
lepton pairs (∆α = ∆αlep), the dotted curve with both lepton and quark pairs, calculated by
the Burkhardt-Pietrzyk parameterization.
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