
some classified as uncorrelated are correlated within a given year, but uncorrelated between
years.

8 Theoretical uncertainties

It is important to assess the theoretical uncertainties associated with the BHLUMI Monte
Carlo. In fact a reliable determination of the running coupling constant from Equation 2 needs
a precise knowledge of the radiative corrections.

The theoretical uncertainty of the BHLUMI calculation of small angle Bhabha scattering has
been studied extensively for the event selections of the LEP experiments. The fractional theo-
retical error is 6.1 × 10−4 for the integrated cross section at LEP1 [13, 18] which was relevant
for the determination of the luminosity. Alternative existing calculations have been widely
cross-checked with BHLUMI [13]. Moreover the extensive comparisons between data and the
predictions of many features predicted by the Monte Carlo by the four LEP collaborations
decrease the chances that it contains significant residual technical imperfections. Therefore the
estimate of the theoretical uncertainty of BHLUMI is considered solid.

We also used two other Monte Carlo generators which are included in the same BHLUMI
package. OLDBIS [20,21] is an exact O(α) calculation, based on a MC program written by an
independent group. LUMLOG [15, 22] implements a Leading-Log calculation up to O(α3L3),
based on a structure function approach, assuming purely collinear radiation. The BHLUMI
package gives access to many intermediate weights which compose the final calculations, so
that we could also check several different approximations.

For the purpose of assessing the theoretical uncertainties, our experimental selection has been
described by a slightly modified version of the idealized model of the OPAL detector, which
is contained in the BHLUMI package (subroutine TRIOSIW). This code was also used for the
work of [13]. Events were generated within a safely enlarged angular region to protect against
loss of visible events. Smearing effects are neglected and an ideal beam geometry is assumed.
Nearby particles are combined by a clustering algorithm which has a window matched to the
experimental resolution. The energy is defined by summing all the particles inside the isolation
cuts in each calorimeter. The position variables R and φ are defined as the coordinates of
the highest energy particle reconstructed on each side. We applied all the isolation cuts listed
in Section 4 to these reconstructed variables. The size of the window used by the clustering
algorithm (in R and φ) has been varied over a large range to verify the stability of the result. As
further checks we used alternative selections, for example, following the nomencalture of [13]),
SICAL, which mostly differs in its lack of acollinearity cuts, and BARE, a non-calorimetric
selection.

The differential cross section obtained at different perturbative orders is shown in Fig. 10
normalized to the reference BHLUMI cross section. Here vacuum polarization, Z-exchange
interference and s-channel photon interference have been switched off. The Born cross section
is reduced by about 5-15 % by radiative corrections, depending on the polar angle. The cross
section at O(α) is slightly lower than the reference but in general agrees within 1 %. The
exponentiated O(α) calculation is almost identical to the reference.
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Examination of the canonical coefficients [23] indicates that for a calorimetric detector accep-
tance such as ours the O(α2L) and O(α3L3) terms dominate the small portion of the complete
small-angle Bhahba scattering cross section which is only approximately calculated in BHLUMI.
The effect of O(α3L3) terms on our slope b can be directly calculated using LUMLOG and is
found to be small for our selection, (−7 ± 13) × 10−5.

Although exponentiation allows BHLUMI to include part of the O(α2L) contributions, we
choose to assign the entire effect of these terms to the theoretical uncertainty. A rough estimate
of this contribution can be obtained from the product of the leading O(αL) and the subleading
O(α) terms, which is about 0.5 × 10−3 times the Born cross section when integrated over the
entire acceptance. To estimate the effect on the running slope, we calculate this product for
the inner and outer halves of the acceptance separately and take the difference. The effect on
the slope b is then 40 × 10−5, where a safety factor 2 has been applied.

A better estimate of the O(α2L) contributions, which also includes contributions due to the
limited technical precision of the Monte Carlo, can be obtained by comparing the reference
O(α2L2) exponentiated calculation of BHLUMI to the combination of the two independent
Monte Carlos, OLDBIS and LUMLOG. We formed the combination used in [13], adding the
exact O(α) given by OLDBIS to the higher orders (O(α2L2) and O(α3L3)) given by LUMLOG.
This result is termed OLDBIS+LUMLOG in what follows, and is compared with several other
precise calculations at our disposal in Fig. 11. To quantify possible deviations from the expected
t shape, we fit the ratios of alternative calculations to the reference BHLUMI with a linear t
dependence. The effect, δb, on our measured slope b is then estimated by accounting for the
factor |t2 − t1|/ ln(t2/t1) = 3.52 which converts from linear to logarithmic t range. We obtain:

δb [(OLDBIS + LUMLOG)/BHLUMI] = −20 ± 31 × 10−5

δb [Exp.O(α)/BHLUMI] = +22 ± 16 × 10−5

δb [O(α2L2)/BHLUMI] = −11 ± 61 × 10−5

The ratio of the exponentiated O(α) calculation to the full BHLUMI is quite flat as a func-
tion of t, with a clear normalization shift of 0.2%, which is however irrelevant to our analysis.
The unexponentiated O(α2L2) seems flat too, albeit with much larger statistical error bars.
The OLDBIS+LUMLOG combination is rather flat with somewhat larger than expected fluc-
tuations. The extreme points on either ends show downward deviations with respect to the
reference BHLUMI, but removing them does not change the fit significantly. We take the sta-
tistical error of the (OLDBIS+LUMLOG)/BHLUMI fit, conservatively increased to achieve a
good χ2, as the uncertainty due to missing higher orders, which are mainly O(α2L), plus the
technical precision of the calculations. This amounts to 41 × 10−5, which is coincidentally in
exact agrement with our cruder estimate obtained from the product of the leading O(αL) and
the subleading O(α) terms, above. This estimate is also seen to be in line with the differences
observed for the exponentiated O(α) and O(α2L2) calculations. Changing the size of the win-
dow used by the cluster algorithm also produces negligible variations. Similar results are also
obtained for the SICAL selection.

The interference with the Z-exchange amplitude in the s-channel is a small correction, desig-
nated δZ in Equation 2, which is not factorized with respect to the main contribution and the
running coupling constant. It is energy dependent, vanishing at

√
s = mZ and changing sign

across the Z pole. In BHLUMI it is calculated up to exact O(α) photonic corrections, which
also can be exponentiated [24]. Vacuum polarization can also be included. Event samples have
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been generated at three different energies: the Z-peak energy (
√

s = 91.1 GeV) and energies
offset by ±2 GeV. At each energy we consider independently the shifts in the slope b produced
by switching off the exponentiation or the vacuum polarization for the calculated interference
term δZ , and then add these shifts in quadrature. The maximum value, 30 × 10−5, is taken as
the uncertainty due to Z interference.

Concerning the contribution of the vacuum polarization to the δZ term, this subtle effect could in
principle perturb the asserted cleanliness of the measurement. However such effect is vanishingly
small at peak energy (we get −6× 10−5 at

√
s = 91.1 GeV) and at off-peak energies has about

equal and opposite values below ±20 × 10−5. This is therefore harmless.

BHLUMI does not include diagrams with extra light pairs (e+e−, µ+µ−). Their contribution
was calculated explicitly for the OPAL selection, giving a fractional correction of (−4.4±1.4)×
10−4 [19] on the integrated cross section. The leading order contribution can be checked with
LUMLOG, and gives effects on the slope b below 11× 10−5 with the OPAL or the SICAL data
selections.

The estimated theoretical uncertainties are summarized in Table 5. Their quadratic sum is
52 × 10−5 and will be added to the experimental errors.

9 Results

As explained in Section 6, our final results are based solely on the angular distribution observed
in the Right calorimeter, and on radial coordinates corrected using the anchoring procedure
described in Section 5. The back-to-back nature of Bhabha events implies that the two sides
of the detector do not provide independent statistical information concerning the running of
α, and the decision to use only the Right calorimeter is based on the desire to reduce possible
unassessed systematic errors. Similarly, the decision to use corrected coordinates has little
import, since we have already required consistency between the corrected and uncorrected
results. Changing any of these choices would shift our result by no more than 10% of its error.

To obtain the final results the radial distribution is binned as specified in Table 1. The numbers
of data and Monte Carlo events in each bin for the largest subsample (94b) are reported in
Table 6. Note that here the Monte Carlo assumes α(t) ≡ α0. The bin-by-bin acceptance
corrections, obtained from Equations 11-12 by inserting the estimated radial biases at the
relevant bin boundaries, are also given.

Our selection contains a small irreducible physics background from the process e+e− → γγ, for
which we apply a correction. Its cross section within our idealized acceptance is found to be
16.9 pb at 91.1 GeV using a Monte Carlo generator including O(α3) terms [25]. The correction
to the slope b is −18 × 10−5, practically constant with respect to our range of centre-of-mass
energies.

The ratio of data to Monte Carlo is fitted with the logarithmic t-dependence of Equation 7
separately for each dataset and the results are reported in Table 7. Both the dominant statistical
errors and the experimental systematic errors, which are determined as described in Section 7,
are shown. The small corrections for the irreducible background and Z interference have been
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