The Legacy of $\sin^2 \theta_{eff}^{lept}$

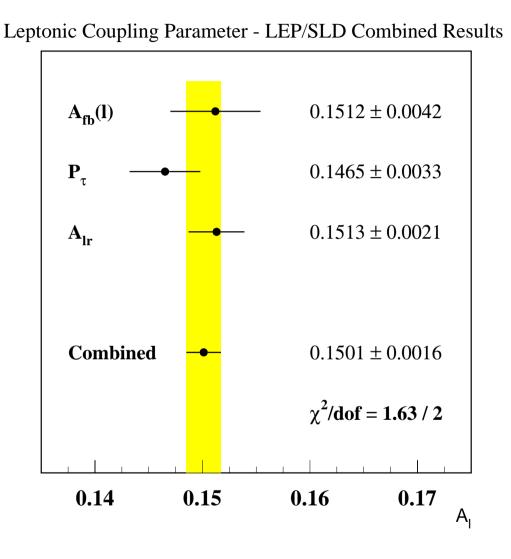
Richard Kellogg - (presented by Pippa Wells) - Budapest 2001

- The measurements of asymmetries and polarizations at LEP and SLC tell us about the parity structure of the Z couplings
- The essential quantity is the *coupling parameter*, which can be expressed in terms of the vector and axial couplings, g_v and g_a

$$\mathcal{A}_{\rm f} = \frac{2g_{\rm Vf}g_{\rm Af}}{g_{\rm Vf}^2 + g_{\rm Af}^2}$$

All the interesting observables can be expressed <u>simply</u> in terms of the coupling parameters

- The forward-backward charge asymmetry:
- The left-right interaction asymmetry for polarized beams:

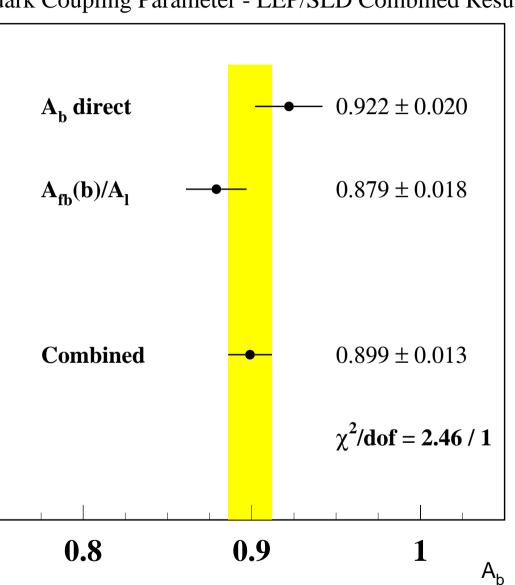

$$A_{\rm FB}^{0,\,\rm f} \equiv \frac{5}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\rm f}$$

2

$$A_{\rm LR}^0 \equiv \mathcal{A}_{\rm e}$$

$$\langle \mathcal{P}_{\tau} \rangle = -\mathcal{A}_{\tau}$$

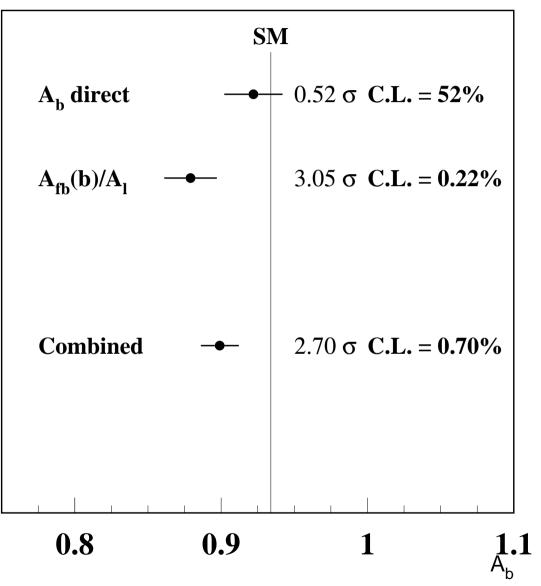
- The leptonic coupling parameter, A₁, can be measured quite independently of any model assumptions, in a number of ways
- All consistent
- Lepton universal

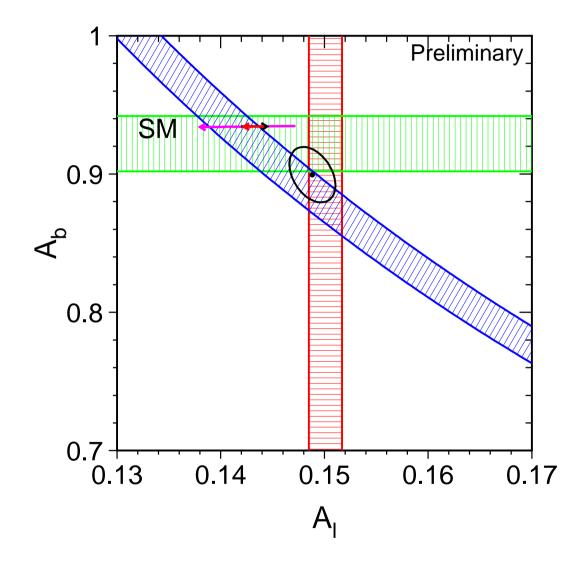

- How about quarks?
 - § A_{FBLR} (b), the forward-backward left-right asymmetry for b-quarks measured by SLD gives a direct measurement of A_b

$$A_{\rm FBLR} = A_{\rm LR}(F) - A_{\rm LR}(B) = \frac{3}{4}\mathcal{A}_{\rm f}$$

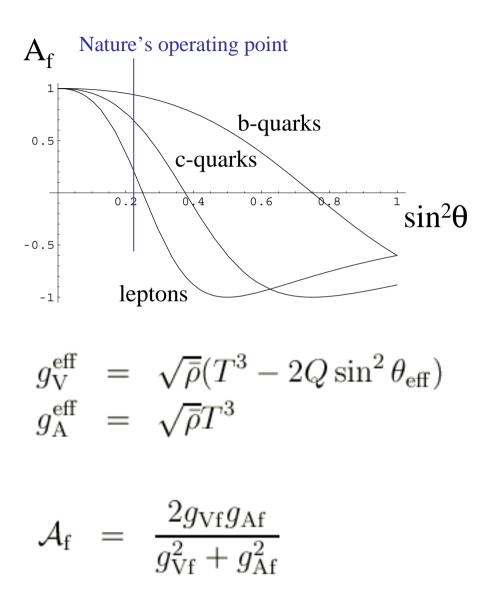
§ $A_{fb}(b)$, the forward-backward asymmetry for b-quarks measured at LEP, gives the product of A_1 and A_b combined with A_1 , this yields an indirect measurement of A_b .

$$A_{\rm FB}^{0,\,\rm f} \equiv \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\rm f}$$


- The two measurements are reasonably compatible
 - with each other
- C.L. = 11%

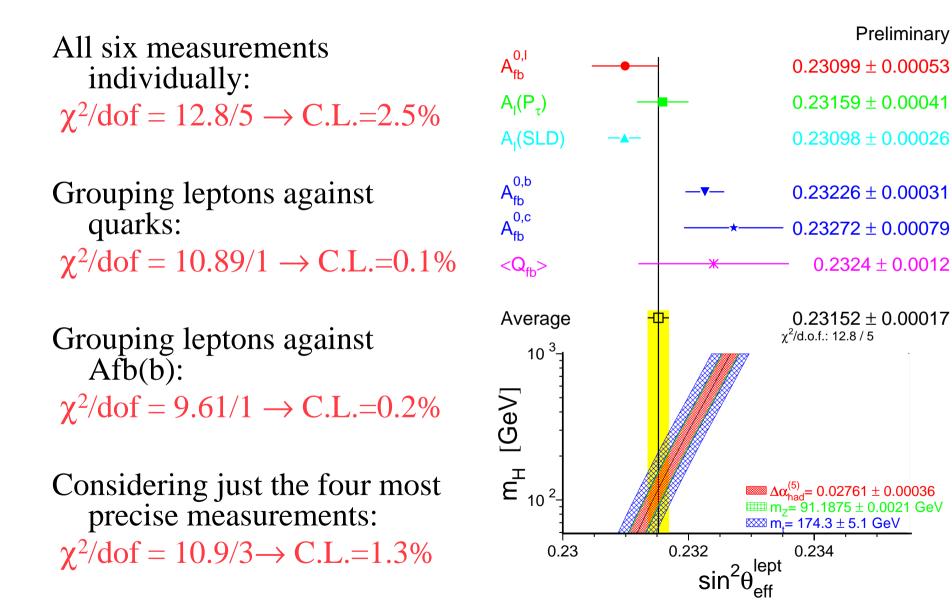


b-quark Coupling Parameter - LEP/SLD Combined Results


- But less
 compatible
 with the
 Standard
 Model
- C.L. = 0.7%

b-quark Coupling Parameter - LEP/SLD Combined Results

- Due to the charge and weak iso-spin assignments of bquarks (-1/3, -1/2) A_b is particularly insensitive to sin² θ at nature's operating point
- A_b is essentially a *root level* prediction of the SM



- Therefore, as soon as we assume the validity of the Standard Model:
 - Inter-fermion comparisons become possible in terms of $\sin^2\theta$
 - Measurements of A_b become irrelevant (the SM knows better)
 - b-quark asymmetry measurements become measurements of A_1 (and hence $\sin^2\theta$)

Consequences:

- The direct SLD measurement of A_b (through A_{FBRL}), which agrees with the SM, is simply ignored
- The indirect A_b measurement, through $A_{fb}(b)$, which disagrees strongly with the SM, becomes a measurement of A_1 (and hence $\sin^2\theta_1$)
 - which now disagrees strongly with the direct $\sin^2\theta_1$ measurement using leptons.

The Notorious $\sin^2\theta$ Discrepancy

Averaging over this discrepancy does not represent a firm foundation for determining the SM parameters!

- We can use the full force of our measurements to expose a defect in the SM at root level.
- But for determining SM parameters, we must believe the SM is OK, and the discrepancy then appears as a disturbing measurement inconsistency.
 - Not a great base for investigating subtle electroweak radiative effects

- What is particularly disturbing is that the current (and historical) stance of the lepewwg is to simply average over the discrepancy
 - The final errors benefit just as fully from two precise measurements of sin²Θ which are 3σ apart as they would if the measurements agreed perfectly
 - -3σ basically doesn't happen in a gaussian world
 - Everyone, if pushed will admit that *no* error estimate is truly gaussian
 - Yet the only acceptable way to take an average is under the gaussian hypothesis

What to do? - Opal should take a reasoned opinion

- Continue averaging?
 - But the PDG will never agree the future will be left with no consensus on this important legacy measurement
- Further study?
 - But time and people are running out
- Determine errors from observed spread?
 - A scale factor of 10.9/3 = 1.9 seems reasonable
- Reject one of the measurements?
 - Better preserves precision, but sociologically difficult

The Conclusion is up to YOU

- Opal has established an editorial board on the LEP-SLD Electroweak Combination paper (to be published in Physics Reports by the "end of the year")
- All interested Opalists are encouraged to participate in the discussion
- See:

http://opalinfo.cern.ch/opal/group/lineshape/drafts/kel-web/lineshape/physrep.html