
Digital Object Identifier (DOI) 10.1007/s100520000446
Eur. Phys. J. C 16, 635–639 (2000) THE EUROPEAN

PHYSICAL JOURNAL C
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Abstract. We consider a hypothetical scenario in which the Higgs boson is absent, and attempt to constrain
the mass scale Λ of the new physics that would take its place. Using recent measurements of sin2 θlept

eff and
MW , we show that, in a class of theories characterized by simple conditions, the upper bound on Λ is close to
or smaller than the upper bound on MH in the Standard Model, while in the complementary class Λ is not
restricted by our considerations. The issue of fine-tuning when Λ is large is briefly discussed. Observations
concerning the magnitude of the Higgs-boson contributions in the Standard Model are included. As a by-
product of our considerations, we discuss the usefulness and important properties of a radiative correction,
∆reff , that directly links sin2 θlept

eff with α, Gµ, and MZ .

1 Introduction

For a long time, the Higgs boson and the associated Higgs
mechanism have been viewed as one of the most intriguing
pillars of the Standard Model (SM). The consistency of
this theory, its success in describing accurately a multitude
of phenomena, and the emergence of Supersymmetry as a
leading candidate for physics beyond the SM have given
very strong support to the Higgs principle. Nonetheless,
the provocative questions remain: What would happen if
the Higgs boson was not found? Is it possible to surmise
something of a general nature about the new physics that
would take its place?

In this paper, we consider a hypothetical scenario in
which the dynamical degrees of freedom associated with
the Higgs boson are absent, and attempt to constrain the
mass scale of the unknown new physics that would take its
place, using current experimental information about two
very sensitive parameters, namely sin2 θlept

eff and MW .

2 Information from sin2 θlept
eff

Our strategy is the following: we first consider a radiative
correction ∆reff that directly links the accurately mea-
sured parameter sin2 θlept

eff , employed to analyze the data
at the Z0 peak, with α, Gµ, andMZ . Specifically, we have

s2effc
2
eff =

A2

M2
Z (1−∆reff)

, (1)

where A2 = (πα/
√
2Gµ) and s2eff = 1− c2eff is an abbrevi-

ation for sin2 θlept
eff .

a Permanent address: Department of Physics, New York Uni-
versity, 4 Washington Place, New York, NY 10003, USA

An expression for ∆reff can be readily obtained by
combining the relations

ŝ2ĉ2 =
A2

M2
Z (1−∆r̂)

, (2)

where ŝ2 = 1 − ĉ2 = sin2 θ̂w(MZ) is the MS electroweak
mixing parameter [1–3] and

s2eff = Re κ̂l(MZ)ŝ2, (3)

studied in [4]. In (2), ∆r̂ is the relevant radiative correc-
tion while, in (3), κ̂l(MZ) is an electroweak form factor.
Writing Re κ̂l(MZ) = 1 + ∆κ̂l, noting that ∆κ̂l is nu-
merically very small [4], and neglecting very small O(g4)
effects, one obtains (1) with the identification

∆reff = ∆r̂ +∆κ̂l
α

α̂

(
1− ŝ2

ĉ2

)
. (4)

Note that the overall coupling of ∆κ̂l(α/α̂) is (α/πŝ2), in
analogy with corresponding contributions to ∆r̂ [1–3]. In
the MS framework of [1–4], ŝ2 is evaluated at the scale
µ = MZ and, therefore, the same applies to the radia-
tive corrections ∆r̂ and ∆κ̂l. However, we may consider
the more general situation in which ŝ2, and therefore also
∆r̂ and ∆κ̂l, are evaluated at a general scale µ. A very
important property of (4) is that, in the SM, the µ depen-
dence of ∆r̂ cancels against that of ∆κ̂l(α/α̂)(1− ŝ2/ĉ2),
so that ∆reff is scale independent. This also means that, if
the MS pole subtractions in ∆r̂ and ∆κ̂l(α/α̂)(1− ŝ2/ĉ2)
are not implemented, their divergent parts cancel against
each other. This property, which we have verified in the
SM at the one-loop level, is to be expected on general
grounds, since ∆reff is related, via (1), to physical observ-
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Fig. 1. Feynman diagrams contributing to (∆reff)H and ∆rH

at one loop

ables. Equation (1) is analogous to the well-known expres-
sion

s2c2 =
A2

M2
Z(1−∆r)

, (5)

where s2 = 1 − c2 = sin2 θw = 1 − M2
W /M2

Z is the elec-
troweak mixing parameter in the on-shell scheme of renor-
malization, MW and MZ are the physical masses of the
intermediate bosons, and ∆r is the corresponding radia-
tive correction [5].

For reasons that will become clear later on, in the dis-
cussion of new physics, we restrict the analysis to one-loop
electroweak diagrams, but we include the O(αα̂s) correc-
tions and the O(αα̂2

s ) contributions to ∆ρ. A convenient
one-loop expression for ∆r̂, linear in the self-energies, is
given in (15c) of [2], and the corresponding perturbative
O(αα̂s) corrections can be obtained from [3]. The contri-
butions to ∆κ̂l, including QCD corrections, are given in
[4]. For simplicity, we neglect very small effects involving
light-fermion masses.

The next step in our strategy is to subtract from the
SM quantity ∆reff the contribution from one-loop dia-
grams involving the Higgs boson, which constitute a
gauge-invariant, albeit divergent subset [6]. They are de-
picted in Fig. 1. In the formulation of [2], this contribution
is given by

(∆reff)H =
α

4πŝ2ĉ2

[(
5
3

− 3c2

2

) (
1

n− 4
+ C + ln

MZ

µ

)

+H(ξ)− 3c2

4
ξ ln ξ − c2 ln c2

ξ − c2

+
19c2

24
+
s2

6

]
, (6)

where ξ =M2
H/M

2
Z , H(ξ) is a function studied in [5], n is

the dimension of space-time, C = [γ−ln(4π)]/2 is the con-
ventional constant accompanying the 1/(n−4) pole in di-
mensional regularization, and we explicitly exhibit the di-
vergent and µ-dependent contributions. We note that the
last four terms in (6) coincide with the MS-renormalized
part of (∆reff)H when the scale µ = MZ is chosen. Call-
ing their contribution (∆reff)MS

H and subtracting (6) from
∆reff , we have

∆reff − (∆reff)H = − α

4πŝ2ĉ2

(
5
3

− 3c2

2

)

×
(

1
n− 4

+ C + ln
MZ

µ

)
+∆reff

−(∆reff)MS
H , (7)

where ∆reff − (∆reff)MS
H is finite and independent of µ

and MH . Thus, after subtracting the Higgs-boson dia-
grams, we are left with a divergent and scale-dependent
expression! Next, we conjecture that contributions from
unknown new physics cancel the divergence and scale de-
pendence of (7). This contribution is then of the form

(∆reff)NP =
α

4πŝ2ĉ2

(
5
3

− 3c2

2

) (
1

n− 4
+ C + ln

M

µ

)
,

(8)
where ln(M/µ) represents the new-physics contribution at
scale µ, in the MS scheme. It is related to the scale Λ of
the new theory by

ln
M

µ
= ln

Λ

µ
+K, (9)

where K = ln(M/Λ) is the new-physics contribution at
scale Λ. Adding (8) to (7), we find that, in the new sce-
nario (NS) in which new-physics effects take the place of
the Higgs-boson contributions, the SM parameter ∆reff is
replaced by

(∆reff)NS =
α

4πŝ2ĉ2

(
5
3

− 3c2

2

)
ln

M

MZ

+∆reff − (∆reff)MS
H . (10)

The first term represents the new-physics contribution at
scaleMZ . As a check, we may consider the particular case
in which the “new physics” is provided by the SM Higgs
boson. For large MH , the leading one-loop Higgs-boson
contribution to ∆reff in the SM is given by (α/4πŝ2ĉ2)
(5/3−3c2/2) ln(MH/MZ), so that, in the asymptotic limit,
M would then be identified with MH .

Next, we constrain ln(M/MZ) from present experi-
mental information. Constraints on Λ will be discussed
later on. Inserting the current central value s2eff = 0.23151± 0.00017 [7] into (1), we find the experimental result
(∆reff)exp = 0.06053± 0.00049. As ŝ2 is numerically very
close to s2eff [4], in the evaluation of (10) we substitute
ŝ2 → s2eff = 0.23151, ĉ2 → c2eff , while for s

2 = 1 − c2

we employ 0.22223, corresponding to the current central
values, MW = 80.419 GeV and MZ = 91.1871 GeV [7].
Using Mt = (174.3 ± 5.1) GeV, α̂s(MZ) = 0.119 ± 0.002
[7], and ∆α(5)

h = 0.02804± 0.00065 [8], (10) leads to

(∆reff)NS =
α

4πs2effc
2
eff

(
5
3

− 3c2

2

)
ln

M

MZ
+ 0.06049

±0.00065± 0.00051± 0.00002. (11)

The quantity ∆α(5)
h stands for the contribution of the five

light quark flavors (u, d, s, c, b) to the renormalized pho-
ton vacuum-polarization function evaluated at q2 = M2

Z .
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Later on, we illustrate the corresponding results for the
value ∆α(5)

h = 0.02770 ± 0.00016 [9], determined by ap-
plying perturbative QCD down to energies of a few GeV.
The errors in (11) are induced by those in ∆α(5)

h , Mt, and
α̂s(MZ), respectively. The last two are found by indepen-
dently varying Mt and α̂s(MZ) in the evaluation of (10).
Comparing (11) with (∆reff)exp and combining the errors
in quadrature, we obtain

ln
M

MZ
= 0.028± 0.586, (12)

corresponding to the central value Mc = 94 GeV and an
upper bound M95 = 245 GeV at the 95% confidence level
(CL). We note that we have employed QCD corrections
to ∆ρ in the conventionalMt approach [10], which, in cal-
culations restricted to one-loop electroweak amplitudes,
leads to larger values of ln(M/MZ) than optimized meth-
ods [11]. Thus, as far as uncertainties in the QCD correc-
tions are concerned, we take (12) to be a rather conserva-
tive estimate.

3 Information from MW

Turning our attention to ∆r, we employ (21) of [2] with
the approximation (c2/s2)∆ρ̂(1−∆r̂w) ≈ (c2/s2)∆ρ̂(α/α̂),
where ∆ρ̂ and ∆r̂w are radiative corrections defined in
that work. In this way, we obtain an expression for ∆r
that depends linearly on the self-energies. In the SM, this
approximation neglects two-loop effects of order 2×10−4.
The SM Higgs-boson contribution to∆r in the SM is given
by

∆rH =
α

4πŝ2

[
11
6

(
1

n− 4
+ C + ln

MZ

µ

)

+
H(ξ)−H(ξ/c2)(1− 2s2)

s2
− 3ξ
4(ξ − c2)

× ln
ξ

c2
+
23
24
+
ln c2

6

(
1
2

− 5c2

s2

)]
. (13)

The relevant Feynman diagrams are depicted in Fig. 1.
The expression analogous to (10) becomes

∆rNS =
11α
24πŝ2

ln
M ′

MZ
+∆r −∆rMS

H , (14)

where the first term represents the new-physics contribu-
tion at scale MZ and ∆r is the SM correction. Employing
the same input parameters as in (11), (14) leads to

∆rNS =
11α
24πs2eff

ln
M ′

MZ
+ 0.03355± 0.00065

±0.00191± 0.00007. (15)

InsertingMW = (80.419±0.038) GeV andMZ = (91.1871
± 0.0021) GeV [7] into (5), we obtain the experimental
value ∆rexp = 0.03298±0.00230. Comparison of (15) with
∆rexp leads to

ln
M ′

MZ
= −0.124± 0.666, (16)

corresponding to M ′
c = 81 GeV and M ′

95 = 240 GeV.
We note that M ′

c and M
′
95 are very close to Mc and M95,

respectively.

4 Discussion and conclusions

It is interesting to compare the above results for M and
M ′ with SM estimates of MH . Using the same input pa-
rameters leading to (12), we apply Eq. (3) of [12] in the
MS scheme discussed in that paper to extract ln(MH/MZ)
from s2eff in the SM, with the result

ln
MH

MZ
= 0.016± 0.629, (17)

which corresponds to a central value M c
H = 93 GeV and

a 95% CL upper bound M95
H = 260 GeV. If, instead, MW

is employed as the basic input, using (4) of [12] in the MS
scheme, we find in the SM

ln
MH

MZ
= −0.728+0.972−1.596 , (18)

M c
H = 44 GeV andM95

H = 193 GeV. We see that (17), the
SM determination ofMH derived from s2eff , is very close to
(12), the M estimate from the same source. On the other
hand, the SM estimate of MH derived from MW [(18)]
is somewhat more restrictive than the corresponding M ′
determination [(16)], with M c

H and M95
H lower by about

37 GeV and 47 GeV, respectively. Nonetheless, the overall
picture that emerges is that the M and M ′ estimates are
very close and also quite similar to the SM determinations
of MH .

The same pattern is apparent when one employs the
“theory-driven” determination of ∆α(5)

h , yielding ∆α(5)
h =

0.02770± 0.00016 [9]. In this case, using s2eff as input, we
find Mc = 116 GeV and M95 = 239 GeV, while the SM
values forMH areM c

H = 116 GeV andM95
H = 249 GeV. If,

instead,MW is used as input, we obtainM ′
c = 87 GeV and

M ′
95 = 252 GeV, while the SM values are M c

H = 51 GeV
andM95

H = 205 GeV. We also note that the central values
obtained with this determination of ∆α(5)

h are somewhat
larger than in the case of ∆α(5)

h = 0.02804 ± 0.00065 [8],
but the 95% CL upper bounds are generally close.

The closeness of M , M ′, and the corresponding MH

estimates in the SM is perhaps surprising. We have al-
ready pointed out, in the discussion after (10), that at
the one-loop level one expects M and M ′ to approach
asymptotically the SM estimate for MH . However, in the
range 100 GeV∼<MH ∼< 300 GeV, we are far away from
the asymptotic domain. Furthermore, there are important
differences between our approach to evaluate M and M ′,
and the SM calculation of MH . In the latter, one con-
siders the detailed MH dependence of the one-loop cor-
rections, and, moreover, current studies include compli-
cated two-loop MH -dependent effects of O(α2M4

t /M
4
W )

and O(α2M2
t /M

2
W ) [13]. It is known that, in the SM, these

two-loop effects decrease significantly the derived value
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for MH and its upper bound. In the hypothetical scenario
we consider in this paper, in which the degrees of free-
dom associated with the Higgs boson are absent, it is not
possible to incorporate such higher-order MH -dependent
effects, and, for that reason, we have restricted ourselves
to one-loop electroweak diagrams. Nonetheless, the results
of the two approaches are very similar. In particular, it is
quite remarkable that the simple formula of (11) with the
replacementM → MH reproduces very accurately the SM
calculation for MH ≈ 100 GeV and remains a reasonable
approximation for larger values of MH . For instance, for
MH = 100, 300, 600 GeV, the differences between (11)
with M → MH and the SM calculations of [12] amount
to −1× 10−5, 1.6× 10−4, and 2.7× 10−4 (corresponding
to differences in s2eff of less than 1 × 10−5, 6 × 10−5, and
1×10−4), respectively. Over the sameMH range, (15) with
M ′ → MH leads to differences in MW of 23 to 10 MeV,
relative to the SM calcualtion of [12].

We now discuss the implications of these results for
the scale Λ of the unknown, alternative theory. Following
(9), we write

ln
M

MZ
= ln

Λ

MZ
+K (19)

in the case of ∆reff [(10)–(12)], and

ln
M ′

MZ
= ln

Λ

MZ
+K ′ (20)

in the case of ∆r [(14)–(16)]. As the alternative theory is
not specified,K andK ′ are unknown constants. Equations
(19) and (20) permit us to classify all alternative theories
into two broad categories: (1) theories in which either K
or K ′ (or both) are positive; (2) theories in which both K
and K ′ are negative. We see that theories of the first class
are bounded by one of the two equations. If K is positive,
at 95% CL we have Λ∼< 245 GeV [(12)]. If K ′ is positive,
Λ∼< 240 GeV [(16)], independently of the precise value of
|K|. We note that these limits are approximately of the
same magnitude as those currently derived for MH in the
SM. It is worth noting that K ′ −K = −0.152± 0.887, so
that one can entertain the possibility that both K and K ′
are simultaneously small, which may occur in a subclass
among weakly interacting theories. If |K|, |K ′| ∼< 0.1, for
instance, the Λ bounds would be quite close to the SM
bounds on MH .

Theories of the second class evade our bounds and may
correspond to large values of Λ, as in the scenario recently
discussed in [14]. If Λ = 1 TeV, for instance, we have K =
−2.367 ± 0.586 [(12) and (19)] and K ′ = −2.519 ± 0.666
[(16) and (20)]. Thus, for Λ = 1 TeV, in order to reproduce
our central values, a fine-tuning of the parameters K and
K ′ is necessary. However, if K and K ′ differ from their
central values by about one sigma, one may argue that no
excessive fine-tuning is necessary. On the other hand, even
at the one-sigma level, a substantial cancellation between
the logarithmic and constant terms is required in order to
accomodate our results, an observation that may become
sharper in the future as errors decrease.

It is important to emphasize that in our formulation we
do not assume ab initio that the scale Λ of the new physics

is large relative to MZ . In fact, our procedure has been to
focus on the radiative corrections associated with two very
precise observables, subtract exactly the Higgs-boson con-
tribution, and then restrict Λ from accurate experiments.
This leads to our conclusion that K > 0 and/or K ′ > 0
is a sufficient condition for Λ to have low 95% CL upper
bounds. The usefulness of this condition stems from the
fact that, if satisfied, one can immediately draw the con-
clusion that Λ is sharply restricted. In some alternative
formulations, such as those based on the S, T , and U pa-
rameters, one assumes ab initio that Λ is large relative
to MZ . Although such formulations permit to discuss the
large-Λ case, they are clearly not suitable to draw conclu-
sions or derive sufficiency conditions in the case when Λ
is close to the electroweak scale.

We also note that the sharp constraints derived above
for theories of the first class are based on the smallness
of ln(M/MZ) in (12) and ln(M ′/MZ) in (16). In turn,
this is related to the very curious fact that the SM Higgs-
boson contributions to (∆reff)MS

H and ∆rMS
H are highly

suppressed for current experimental inputs. In order to
show this, it is sufficient to point out that (α/4πs2effc

2
eff)

(5/3−3c2/2) ln(M/MZ) in (11) and (11α/24πs2eff) ln(M
′/

MZ) in (15) replace the full one-loop Higgs-boson contri-
butions, as well as the MH -dependent effects of
O(α2M4

t /M
4
W ) and O(α2M2

t /M
2
W ), currently incorpo-

rated in the calculation of these basic corrections [12,13].
Using the values of ln(M/MZ) in (12) and ln(M ′/MZ)
in (16), we find that these contributions amount to only
(0.46± 9.57)× 10−4 and (−5.69± 30.61)× 10−4, respec-
tively. As the typical order of magnitude of electroweak
corrections is α/(πs2eff) ≈ 0.01, we conclude that the SM
Higgs-boson contributions to (∆reff)MS

H and ∆rMS
H are, in-

deed, highly suppressed. This corresponds to the small val-
ues of ln(M/MZ) and ln(M ′/MZ) found above, and leads
to the sharp constraints on theories of the first class. As an
illustrative counter-example, if the SM Higgs-boson con-
tributions to these corrections were 0.5% for current ex-
perimental inputs, and the errors were the same, we would
obtain ln(M/MZ) = 3.064 ± 0.586 and ln(M ′/MZ) =
1.087 ± 0.666, corresponding to M95 = 5.10 TeV and
M ′

95 = 806 GeV, and the constraints on theories of the
first class would be irretrievably lost.

The simplest mechanism that gives positive contribu-
tions toK andK ′ is a heavy, ordinary, degenerate fermion
doublet. It contributes 2/11 to K ′ [15] and, to very good
approximation, 1/3 to K. Theories that contain several
degenerate doublets, such as the simplest technicolor mod-
els, are likely to belong to the first class. Instead, heavy
non-degenerate doublets with sufficiently large mass split-
tings contribute negatively to K and K ′ and are likely to
lead to second-class theories.

In this paper, we have considered the constraints de-
rived from the two most sensitive measurements, to wit
those of sin2 θlept

eff and MW . Additional information can
be obtained from other observables, such as the Z-boson
width. However, the corresponding effective logarithm is
not expected to be as tightly constrained as those in (12)
and (16).
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In summary, there are very powerful arguments to ex-
pect the discovery of the Higgs boson. In the unlikely event
that this fundamental particle is not found, one expects
the emergence of new physics. We have seen that in a class
of alternative theories, characterized by a simple condi-
tion, the scale Λ is bounded by limits that are roughly of
the same magnitude as those currently derived for MH in
the SM, while the complementary class is not restricted by
our considerations. As a by-product, we have emphasized
the usefulness of a basic electroweak correction,∆reff , that
directly links s2eff , α, Gµ, and MZ .
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