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Precision Observables and Electroweak Theories
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We compute the bounds from precision observables on alternative theories of electroweak symmetry
breaking. We show that a cutoff as large as 3 TeV can be accommodated by the present data, without
any new particles or unnatural fine tuning.
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During the past few years, precision measurements of
electroweak observables have probed the standard model
of particle physics to the 0.1% level. They now give a
95% C.L. upper bound of 230 GeV on the mass of the
standard model Higgs boson [1]. Precision measurements
have also constrained many alternative theories to the stan-
dard model. For example, they have ruled out many of the
most naive technicolor theories [2].

The theory of effective Lagrangians provides a conve-
nient way to describe the low-energy effects of new physics
beyond the minimal standard model. One approach is to
take the standard model with a fundamental Higgs bo-
son and add a set of SU�3� 3 SU�2� 3 U�1� invariant
higher-dimensional operators, suppressed by a scale L.
These operators are generated by new physics at the scale
L, beyond that of the usual standard model. Because the
effective theory includes a fundamental Higgs boson, trivi-
ality gives the only upper bound on the scale L. This ap-
proach has recently been used to study the Higgs mass limit
that comes from precision measurements. It was shown
that the new operators can raise the limit on the Higgs
mass as high as 400–500 GeV, barring unnatural cancel-
lations [3].

A second approach is to eliminate the Higgs entirely and
parametrize the present data in terms of the standard model
fields that have been discovered to date. In this approach,
there are no new particles below the scale L, which defines
the scale of the physics responsible for electroweak sym-
metry breaking. At low energies, all effects of this physics
can be described by a gauge invariant chiral Lagrangian,
in which the higher-dimensional operators are suppressed
by L. This approach is valid for energies E & L. General
unitarity considerations restrict L & 3 TeV [4].

In this Letter we pursue this second approach and fo-
cus on the physics of electroweak symmetry breaking. We
will use the precision measurements to constrain the coef-
ficients of the leading higher dimensional operators in the
chiral Lagrangian, as a function of the scale L. We will
find that even for L � 3 TeV the present precision data
can be accommodated without any new particles or unnat-
ural fine tuning.

If L � 3 TeV, the physics of electroweak symmetry
breaking lies outside the reach of the CERN LEP and Fer-
milab Tevatron colliders. Our analysis indicates that this
0031-9007�00�84(7)�1385(4)$15.00 ©
possibility remains open, despite the 230 GeV upper limit
on the mass of the standard model Higgs. We shall see
that the data are perfectly consistent with theories in which
there are no new particles below 3 TeV. Of course, it is an
open question whether such theories can actually be con-
structed, consistent with the data. Nevertheless, our results
point to a loophole in the common assertion that the pre-
cision data require a Higgs boson or other new physics to
be close at hand.

The plan of this Letter is as follows: We start by pre-
senting the gauged chiral Lagrangian associated with elec-
troweak symmetry breaking. We then focus on the two
operators that are most important for precision measure-
ments on the Z pole. We compute the effects of these op-
erators on experimental observables and derive limits on
their coefficients as a function of the scale L. Finally, we
discuss our results in the context of alternative scenarios
for electroweak symmetry breaking.

The gauged chiral Lagrangian provides a model-
independent description of the physics that underlies elec-
troweak symmetry breaking [5,6]. It is valid for energies
E & L, where the new physics becomes manifest.

The Lagrangian is constructed from the Goldstone
bosons wa associated with breaking SU�2� 3 U�1� !
U�1�. The fields wa are assembled into the group element
S � exp�2iwata�y�, where the ta are Pauli matrices,
normalized to 1�2, and y � 246 GeV is the scale of the
symmetry breaking. The fields wa transform nonlinearly
under SU�2� 3 U�1� transformations, S °! LSRy,
where L [ SU�2� � SU�2�L and R [ U�1� , SU�2�R .
The gauge bosons appear through their field strengths,
Wmn � Wa

mnta and Bmn � B3
mnt3, as well as through

the covariant derivative, DmS � ≠mS 1 igWa
mtaS 2

ig0SB3
mt3.

The gauged chiral Lagrangian is built from these objects.
It can be organized in a derivative expansion,

L � L �2� 1 L �4� 1 . . . , (1)

where

L �2� �
y2

4
TrDmSDmSy 1

g02y2

16p2 b1 �TrT SyDmS�2

1
gg0

16p2 a1 TrBmnSyWmnS , (2)
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and T � Syt3S. The Lagrangian is invariant under
SU�2� 3 U�1� gauge transformations. In the unitary
gauge, with S � 1, the terms in L �2� give rise to the W
and Z masses. The terms in L �4� give rise to “anomalous”
three- and four-gauge boson self-couplings; they are of
higher order in the derivative expansion, so we do not
consider them here.

The coefficients a1 and b1 are important because they
contain information about the physics of electroweak sym-
metry breaking. Note that the operator proportional to a1
preserves weak isospin in the limit B3

m ! 0, while the one
proportional to b1 does not. The coefficients are obtained
by matching Green functions in the effective theory with
those of the underlying fundamental theory, just below the
scale L. The coefficients a1 and b1 are normalized so
that they are naturally O �1� for a strongly interacting sec-
tor with L � 3 TeV. They can be much smaller if the
symmetry-breaking sector is weakly coupled; they can be
larger if the fundamental theory contains many particles
charged under SU�2� 3 U�1�.

In what follows we will study the effects of a1 and b1 on
the W and Z propagators. These coefficients are closely
related to the parameters S and T [2]. The relation is found
by renormalizing the coefficients from L to the scale MZ ,
where S and T are defined. One finds

S � S0 1
1

6p
log

µ
L

MZ

∂
,

T � T0 2
3

8pc2 log

µ
L

MZ

∂
,

(3)

where c � cosuW , and S0 and T0 are fixed in terms of a1
and b1 at the scale L,

S0 � 2
a1

p
, T0 �

b1

pc2 . (4)

Note that the logarithms are exactly calculable because
they come from standard model loops. (We assume ex-
plicitly that there are no light particles, such as pseudo-
Goldstone bosons, with masses between L and MZ [7].)
Equation (3) connects the new physics at the scale L with
precision measurements at the scale MZ .

We are now ready to find the constraints imposed by
precision electroweak measurements on S and T and,
consequently, on the scale L and the coefficients a1
and b1.

Most global analyses of precision electroweak data are
carried out in the context of the standard model with a fun-
damental Higgs boson. Fortunately, these analyses can be
easily converted to the case at hand. One simply subtracts
the contributions to S and T from a standard model Higgs
boson, evaluated at a reference mass, Mref

H , and then adds
back the contribution from Eq. (3). In this way one can
readily compute the values of S and T that come from the
gauged chiral Lagrangian.
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The contributions to S and T from a heavy Higgs have
been computed in the literature [6]. They are

S � 2
1

6p

∑
5
12

2 log

µ
MH

MZ

∂∏
,

T �
3

8pc2

∑
5
12

2 log

µ
MH

MZ

∂∏
,

(5)

where the constant is computed in the MS (modified
minimal-subtraction) scheme. Note that the logarithmic
dependence on the Higgs mass is exactly the same as
the logarithmic dependence on L in Eq. (3). This is no
surprise, because MH plays the role of L, and the standard
model renormalization is exactly the same in each case.

With this result, we are ready to make contact with the
data. Let S�mt , MH ; mref

t , Mref
H � and T �mt , MH ; mref

t , Mref
H �

be the standard model S and T parameters, presented as a
function of the physical top quark and Higgs boson masses,
defined with respect to reference values mref

t and Mref
H ,

respectively. The values of S and T from the gauged chiral
Lagrangian are then given by

S�mt , S0, L� � S�mt , M
ref
H ; mref

t , Mref
H �

1 S0 1
5

72p
1

1
6p

log

µ
L

Mref
H

∂
,

T �mt , T0, L� � T �mt , M
ref
H ; mref

t , Mref
H �

(6)

1 T0 2
5

32pc2 2
3

8pc2 log

µ
L

Mref
H

∂
.

The physically allowed region of S-T space is deter-
mined from a x2 fit to fourteen precisely measured elec-
troweak observables. Each observable Oi is represented
by a four-parameter linearized function,

Oi � O ref
i 1 siS 1 tiT 1 xi�as 2 aref

s �
1 yi�Da5

had 2 Da5
ref� , (7)

where O
ref
i is the standard model value of the observ-

able at the reference values of top quark and Higgs bo-
son masses. The strong coupling as is evaluated at the
scale MZ ; we take aref

s � 0.12 as the corresponding ref-
erence point. In this expression, Da

5
had is the five-flavor,

hadronic portion of the vacuum polarization correction to
the electromagnetic coupling constant at the scale MZ , and
Da

5
ref � 277.5 3 1024 is its reference point. The coeffi-

cients si and ti are computed from the standard model [2].
The coefficients xi , yi and the reference values Oref

i are
computed using the ZFITTER 6.11 computer code [8]. All
coefficients are insensitive to the choice of the reference
points.

The fourteen observables are the following: the width
GZ of the Z boson [9]; the e1e2 pole cross section of
the Z [9]; the ratio of the hadronic and leptonic partial
widths of the Z [9]; the Z-pole forward-backward asym-
metries for final-state leptons, b quarks, and c quarks [9];
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Z-pole left-right coupling asymmetries for electrons and t

leptons as determined from final-state t polarization mea-
surements [9]; the Z-pole hadronic charge asymmetry [9];
the left-right cross section asymmetry for Z production [9];
the mass MW of the W boson [9]; R2, a quantity con-
structed from the ratios of neutral- and charged-current n

and n cross sections [10]; the weak charge of the cesium
nucleus [11]; and the weak charge of the thallium nucleus
[12]. The fit is performed with Da

5
had constrained to the

value �277.5 6 1.7� 3 1024, as determined by a recent
analysis [13]. The x2 weight matrix includes correlated
errors for the LEP Z line shape parameters. The resulting
two-dimensional 68.3% confidence region in S-T space
is shown in Fig. 1 for the reference point �mref

t , Mref
H � �

�175, 500� GeV. The one-dimensional 68% confidence in-
tervals for the parameters are

S � 20.13 6 0.10, T � 0.13 6 0.11 ,

as�MZ� � 0.119 6 0.003 , (8)

Da5
had�MZ� � �277.6 6 1.7� 3 1024 .

Note that the S and T confidence regions (one and two
dimensional) implicitly incorporate the uncertainties
resulting from the imprecise knowledge of as�MZ� and
Da

5
had�MZ�.

To test the consistency of our approach, we perform
a chi-square fit of the measured values of S and T
to the standard model functions S�mt , MH ; mref

t , Mref
H �

and T �mt , MH ; mref
t , Mref

H �, which are calculated with
ZFITTER 6.11. The x2 weight matrix is obtained from the
inverse of the S-T error matrix. We add an additional
term to the x2 function to include a constraint on the
top quark mass [14], mt � 174.3 6 5.1 GeV. We then
compare the result of this fit with that of a direct fit to
the standard model using the same fourteen observables
with the same constraints. The standard model fit yields a
central value for MH of 106.3 GeV and a 95% upper limit
of 228.5 GeV. The S-T fit yields very consistent values
of 107.4 and 228.8 GeV, respectively.
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FIG. 1. Fit to S and T from electroweak observables, with
Mref

H � 500 GeV and mref
t � 175 GeV.
In what follows, we use a similar procedure to de-
rive confidence intervals for the parameters S0, T0, and
L, which characterize the electroweak symmetry break-
ing sector. We fit the measured values of S and T to the
functions defined in equations Eqs. (6), with the same ref-
erence masses as above. In addition, we add the same
mt-constraining term to the x2 function.

Of course, it is not possible to determine all three of
S0, T0, and L using just two measurements. Indeed, for
any fixed L, it is always possible to adjust the matching
coefficients S0 and T0 to fit the low energy data. How-
ever, the situation S ø S0 and T ø T0 would be un-
natural, since it would suggest finely tuned cancellations
in Eqs. (3). Indeed, there is no reason to expect any cor-
relation between chiral Lagrangian parameters generated
directly at the scale L and logarithmic radiative correc-
tions generated in running the theory from L down to MZ .
We will see that even for L � 3 TeV no such tuning is
required.

The result of our fit is shown in Fig. 2. We plot the al-
lowed region for S0 and T0 for L � �3, 2, 1, 0.5, 0.1� TeV.
The L � 100 GeV point is shown, although our chiral
Lagrangian description is not valid for such a low cutoff.
The 68% and 95% C.L. ellipses are shown for L � 3 TeV;
the fit yields the central values �S0, T0� � �20.27, 0.46�
and the 68% C.L. ranges

20.37 , S0 , 20.17, 0.34 , T0 , 0.58 . (9)

For smaller L, the central values for S0 and T0 become
smaller, as shown in Fig. 2 while the error ellipse retains
its size and orientation.

From the relation (4) between �S0, T0� and �a1, b1�, we
see that chiral Lagrangian coefficients of order 1 or smaller
are needed to fit the precision data, for all reasonable val-
ues of L. As a measure of the tuning which is required to
fit the data, we compute the ratio of the constant term to the
logarithm in Eqs. (3); the deviation of this ratio from one
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FIG. 2. Fit to S0 and T0 from electroweak observables, for
L � �3, 2, 1, 0.5, 0.1� TeV. (The values decrease from the upper
left to the lower right.) Both 68% and 95% C.L. ellipses are
shown for L � 3 TeV.
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is an indication of the degree to which each constant must
be adjusted to cancel the logarithm and fit the data at MZ .
Taking the central values �a1, b1� � �0.85, 1.11� from the
fit at L � 3 TeV, we find a ratio of 1.4 for S and 0.85 for
T . Even without including the experimental uncertainties,
we see that no significant tuning of a1 and b1 is required.

Precision electroweak measurements place a strong up-
per limit on about 230 GeV on the mass of the Higgs boson
in the context of the standard model of particle physics. In
this Letter, we have seen that these measurements do not
rule out alternative theories. Indeed, we find that they per-
mit strongly interacting theories with no new particles up
to a scale of 3 TeV. Our results have implications for the
design of potential new high energy colliders.

Nevertheless, we have seen that precision measurements
place significant constraints on these alternative theories.
They constrain the parameters a1 and b1 to be of order
unity, and for L * 1 TeV, they completely fix their signs.
It is, of course, an urgent and open question to determine
whether a reasonable model can be constructed with these
parameters. For example, it has previously been observed
that it is difficult to obtain a1 . 0 in naive technicolor
theories [2]. In such models, S receives a small positive
contribution of approximately 0.1 for each weak doublet
in the fundamental theory.

More generally, we would argue that the data disfavor
models in which fermion masses are generated directly by
the electroweak symmetry breaking dynamics. Fermion
masses arise from interactions of the form

F
ij
U Qi

Lu
j
R 1 F

ij
D Qi

Ld
j
R 1 F

ij
L Li

Le
j
R , (10)

where i, j � 1, 2, 3 are flavor indices and F
ij
a , a �

U, D, L, are (possibly composite) fields which assume
nonzero vacuum expectation values. In the standard
model, F

ij
U � l

ij
UF, F

ij
D � l

ij
DF�, and F

ij
L � l

ij
L F,

where F is the single Higgs boson and the l
ij
a are

27 Yukawa couplings which break the U�3�5 flavor
symmetry. In theories in which these symmetries are
dynamically broken, the fields F

ij
a are dynamical degrees

of freedom that carry representations of the flavor sym-
metry group. When the F

ij
a are integrated out, they give

a contribution to a1 which includes a trace over a large
number of fields. Generically, we expect the trace to be
large: in the unrealistically minimal scenario in which the
trace is 27 times the contribution of a single scalar, we
find ja1j � 27 3 �5�72� � 1.9. A more realistic model
would require significant cancellations to achieve the
observed value of a1.
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Note added.—After this work was completed, we be-
came aware of Ref. [15]. In this paper the authors show
that the upper bound on L is very close to the upper bound
on MH in the standard model when a1 and b1 are near zero.
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