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We have performed the first global QCD analysis to include the CCFR and NuTeV

dimuon data, which provide direct constraints on the strange and anti-strange parton distri-

butions, s(x) and s̄(x). To explore the strangeness sector, we adopt a general parametriza-

tion of the non-perturbative s(x), s̄(x) functions satisfying basic QCD requirements. We find

that the strangeness asymmetry, as measured by the momentum integral [S−] ≡
∫ 1

0
x[s(x)−

s̄(x)]dx, is sensitive to the dimuon data provided the theoretical QCD constraints are en-

forced. We study the range of uncertainty of [S−] using the Lagrange Multiplier method,

which probes the quality of the global fit as a function of the strangeness parameters. Our

estimate within the context of this global analysis is that −0.001 < [S−] < 0.004. Repre-

sentative parton distribution sets spanning this range are given. Comparisons with previous

work are discussed. These results contribute to the assessment of QCD corrections to the

Paschos-Wolfenstein relation, which is used in the measurement of the Weinberg parameter

sin2 θW in νN and ν̄N scattering.
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1 Introduction

The recent measurements of both neutrino and antineutrino production of dimuon final

states (charm signal) by the CCFR and NuTeV collaborations [1] provide the first promising

direct experimental constraints on the strange and anti-strange quark distributions of the

nucleon, s(x) and s̄(x). In addition to the intrinsic interest in nucleon structure, the strange

asymmetry (s− s̄) has important implications on the precision measurement of the Weinberg

angle in deep inelastic scattering of neutrinos.[2–6] We report here the first global QCD

analysis that includes the new dimuon data, using the methods developed by the CTEQ

collaboration, specifically to explore the strange and anti-strange parton parameter space.a

In previous global analyses, information on s and s̄ has resided only in inclusive cross

sections for neutral and charged current DIS. The reliability of the extraction of the quite

small s and s̄ componentsb (from differences of large cross sections measured in different

experiments) was always in considerable doubt. For this reason, most global fits adopted

the assumption s(x) = s̄(x) = κ(ū + d̄)/2 (with κ ∼ 0.5) at some low value of Q; this

approximation was inferred from the earlier combined neutrino and antineutrino dimuon

experiments. The recent high-statistics dimuon measurements of [1] provide greater accuracy,

as well as the first opportunity to study the difference s(x)− s̄(x). Neutrino induced dimuon

production, (ν/ν̄)N → µ+µ−X, proceeds primarily through the subprocesses W+s → c and

W−s̄ → c̄ respectively, and hence provides independent information on s and s̄.

We present the first global QCD analysis that includes this new dimuon data. The

new results demonstrate, first of all, that the strangeness asymmetry, as measured by the

momentum integral [S−] ≡
∫ 1

0
x[s(x)− s̄(x)]dx, is indeed more sensitive to the dimuon data

than to the DIS data—due to an important interplay between the enhanced experimental

constraints and the strong theoretical requirements of PQCD. We then use the recently

developed Lagrange method of global analysis to explore the range of uncertainty of [S−]

in the global analysis context. In this first report, we concentrate on [S−], the integrated

strangeness asymmetry, which represents a new parton degree of freedom in the nucleon

heretofore largely unexplored, and which has immediate impact on precision electroweak

physics because of the NuTeV anomaly.[2] The full exploration of the density functions s(x)

and s̄(x) will be presented later.

We begin by describing the general features of the strangeness sector of the nucleon

structure in the QCD framework, and our general parametrization of that sector. This is

followed by the main results of the global analysis, with emphasis on concrete representative

global fits relevant for probing the strangeness asymmetry. The paper concludes with a

summary of the extensive studies performed beyond the examples given, comparisons to

aA preliminary version of this study was reported at the Lepton Photon 2003 International Symposium,

Fermilab, August 2003. Cf. P. Gambino (arXiv:hep-ph/0311257) and R. Thorne (hep-ph/0309343), to be

published in the Proceedings.
bThe strangeness content of the nucleon, as measured by the momentum fraction carried by s or s, is of

order 3% at Q = 1.5 GeV.
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previous work on strangeness asymmetry, and conclusions.

2 General properties of s(x)− s̄(x) and its first two mo-

ments

For each Q, let us define the strangeness number densities s±(x) and their integrals [s
±

] by

[s±] ≡

∫ 1

0

s±(x) dx ≡

∫ 1

0

[s(x) ± s̄(x)] dx , (1)

and the momentum densities S±(x) and integrals [S±] by

[S±] ≡

∫ 1

0

S±(x) dx ≡

∫ 1

0

x[s(x) ± s̄(x)] dx . (2)

In the QCD parton model, certain features of these quantities are necessary:

1. The parton distributions s(x) and s̄(x) (or equivalently s±(x)), are parametrized at

some low (non-perturbative) scale Q0; the full Q-dependence is then determined by DGLAP

evolution.

2. The strangeness number sum rule for the nucleon requires

[s−] = 0 (for all Q). (3)

A necessary corollary is that the density function s−(x) must be less singular than 1/x as

x → 0 for all Q.

3. The momentum sum rule requires

[S+] = 1 − Σ0 (for all Q). (4)

where Σ0 represents the momentum fraction of all non-strange partons. This condition

constrains [S+] because Σ0 is rather well determined by total inclusive DIS and other exper-

iments.

4. In the limit x → 0 (high energy and fixed Q), Regge considerations and the Pomeranchuk

theorem predict s−(x)/s+(x) → 0.

From these general constraints, we draw the following conclusions:

• The number sum rule, Eq. (3), implies that a graph of s−(x) must cross the x-axis at least

once in the interval [0, 1]; and the areas bounded by the curve above and below the x-axis

must be equal.

• Assuming a simple scenario in which there is only one zero crossing, either s−(x) < 0 in

the low x region and s−(x) > 0 in the high x region, or vice versa. The two possibilities

imply [S−] > 0 or [S−] < 0, respectively, because the momentum integral suppresses the

small x region and enhances the large x region.
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According to the parametrizations of s(x) and s̄(x) used by the CCFR-NuTeV dimuon

study [1, 7], s−(x) is negative in the x range covered by the experiment (0.01 < x < 0.3).c A

previous detailed global analysis of inclusive data by Barone et al. [3] (henceforth referred

to as BPZ), finds that s−(x) is positive in the large x region. These previous results are

shown in Fig. 1 as the two solid curves. When combined with the theoretical constraints
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Figure 1: Comparison of s−(x) and S−(x) for our central fit “B” (dot-dashed) with those of

BPZ and CCFR-NuTeV (solid). The horizontal axis is linear in z ≡ x1/3 so that both large

and small x regions are adequately represented; the functions are multiplied by a Jacobian

factor dx/dz so that the area under the curve is the corresponding integral over x.

discussed above, both these results favor the first possibility mentioned above, i.e. [S−] > 0.

The dash-dotted curves in the two plots of Fig. 1, taken from a representative global fit to

be discussed in Sec. 4, provide a concrete example (of s−(x) and S−(x)) that embodies the

general features just discussed. The magnitude of [S−] will depend on the crossing point

and the precise shape of the s−(x) curve.

cSince the preliminary version of this work was reported, the CCFR-NuTeV collaboration has emphasized

that their most recent analysis more favors zero strangeness asymmetry (K. MacFarland and P. Spentzouris,

communications at the LP03 Symposium and WIN03 Workshop). More definitive studies are needed to

clarify the situation. See further discussions in Sec. 5.
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• Because the experimental constraints are weak or non-existent in the very small x region,

say x < 0.01, the detailed behavior of s−(x) is unconstrained in this region, as shown by

the various classes of solutions displayed in the upper plot of Fig. 2 (taken from fits to be

discussed in Sec. 4). However, this uncertainty at small x has little consequence for S−(x),

as explicitly demonstrated by the curves of the lower plot. Thus the above observations

concerning [S−] are not much affected by the uncertainty of the very small x behavior,

unless that behavior is so extreme that the small x region provides a significant contribution

to the number sum rule.
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Figure 2: Typical strangeness asymmetry s−(x) and the associated momentum asymmetry

S−(x), as obtained in our global analysis. The axes are the same as in Fig. 1.

3 General parametrization of the strangeness distribu-

tions

To explore the strangeness sector of the parton structure of the nucleon, we need a suit-

able parametrization of s(x) and s̄(x) (or equivalently s±(x)) at a fixed scale Q0. This

parametrization must satisfy the theoretical requirements specified above, and it should be

as general as possible so that the allowed functional space can be fully explored. A general
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parametric form is essential, so that our conclusions are not artifacts of the parametrization,

but truly reflect the experimental and theoretical constraints.

It is more natural to parametrize the s±(x, Q0) functions independently (rather than

s and s̄) since they satisfy different QCD evolution equations: pure non-singlet for s− and

mixed singlet/non-singlet for s+. We use the following parametrizations,

s+(x, Q0) = A0 xA1(1 − x)A2P+(x; A3, A4, ...) (5)

s−(x, Q0) = s+(x, Q0) tanh[a xb(1 − x)cP−(x; x0, d, e, ...)] (6)

where P+(x; A3, . . . ) is a positive definite, smooth function in the interval (0, 1), depending

on additional parameters A3, . . . such as are used for u, d, g, . . . in most CTEQ [8] and other

global analyses [9, 10]; and

P−(x) =

(

1 −
x

x0

)

(

1 + dx + ex2 + · · ·
)

(7)

where the crossing point x0 is determined by the strangeness number sum rule [s−] = 0, and

the parameters d, e, . . . are optional, depending on how much detail is accessible with the

existing constraints. Important features of this parametrization are the following:

• The strangeness quantum number sum rule, [s−] = 0, is satisfied by the choice of x0. The

parameter x0 has a physical interpretation: it is the “crossing point” where s−(x) = 0. (If d

and/or e are not zero, there can be additional zeros of s−(x).)

• The fact that the tanh function has absolute value less than 1 ensures positivity of s(x)

and s̄(x). The fact that tanh is a monotonic function guarantees that the function s−(x)

can be made as general as necessary by the choice of P−(x).

• The small-x behavior of s−(x) must be such that the integral [s−] converges (before the

root x0 is determined). Let β− ≡ A1 + b; then Eq. (6) implies

s−(x) ∼ xβ− as x → 0. (8)

The convergence of [s−] is guaranteed if β− > −1, i.e. the parameter b is chosen in the range

b > −1 − A1.

Because P±(x) can be made as general as necessary, the choice in Eqs. (5)–(7) is capable of

exploring the full strangeness parameter space allowed by data in the PQCD framework.

4 Global Analysis

We now describe the global QCD analysis, which includes all relevant experimental data and

implements the theoretical ideas outlined above. This may be considered an extension of the

on-going CTEQ program of global analysis. Several new elements (compared to the latest

CTEQ6M [8] and CTEQ6HQ [11] analyses) are present. On the experimental side, we have

added the CDHSW inclusive F2 and F3 data sets [12], the CCFR-NuTeV dimuon data sets
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[1] and the new E866 pp Drell-Yan data set [13]. On the theoretical side, we have expanded

the parameter space to include the strangeness sector as discussed in Sec. 3.

Compared to the global analyses of BPZ [3], which have also allowed s 6= s̄, the major

difference experimentally is our inclusion of the dimuon data, which provide a direct handle

on s and s̄; and, theoretically, the generality and naturalness of our parametrization of

the strange distributions.d Since the results of [3] on strangeness asymmetry rely on small

differences of inclusive DIS charged-current and neutral-current measurements, BPZ took

great pains in performing the analysis at the cross section level, applying uniform procedures

to treat data from different experiments in the comparison to theory. Now that the dimuon

data are available to constrain the strange distributions, such an elaborate procedure offers

very limited advantage; furthermore, the differences are intrinsically uncertain. Therefore,

for all inclusive DIS processes we use the standard procedure of comparing theory with the

published F2 and F3 structure function data. In our analysis, the fit to charged-current

(neutrino) inclusive structure functions is dominated by the high statistics CCFR data.

Although we have included the earlier inclusive CDHSW data (which play a prominent role

in the analysis of [3]), they have no discernible influence on the results presented below.

To include the CCFR-NuTeV neutrino and antineutrino dimuon production data in a

global QCD analysis is not a straightforward task. The experimental measurement is pre-

sented as a series of “forward differential cross sections” with kinematic cuts, whereas the

theoretical quantities that are most directly related to the parton distribution analysis are

the underlying “charm quark production cross sections.” The gap between the two is bridged

using a Monte Carlo program that incorporates kinematic cuts as well as fragmentation and

decay models. In our analysis, we use a Pythia program provided by the CCFR-NuTeV

collaboration.e This Monte Carlo calculation is done in the spirit and the framework of

leading-order (LO) QCD. CTEQ5L parton distributions and Peterson fragmentation func-

tions were used. The parameters of the model were tuned to reproduce, as closely as possible,

the detailed differential dimuon cross sections published in [1]. Because the only available

data sets are converted by this procedure, we use LO theoretical formulas for the charm

cross section in the current analysis. Our results show that the uncertainties resulting from

existing experimental constraints are quite large, so the LO treatment is adequate for this

first study of the dimuon data in a global QCD analysis context. All fully inclusive (large)

cross sections used in this global analysis are treated in NLO QCD; the precision of these

data sets demands that level of accuracy. Using an LO approximation for the dimuon data

in this NLO analysis is not ideal; however, within current experimental uncertainties, the

NLO corrections to the charm production cross section are not large enough to affect the

qualitative features of our analysis. In Sec. 4.4, we will discuss the robustness of our results.

We will also briefly describe a series of purely LO fits, which are carried out for comparison

dRef. [3] parametrizes s(x) and s̄(x) in simple forms, rather than s±(x). We prefer to parametrize s±(x)

for the reasons given in Sec. 3.
eWe thank Tim Bolton and Max Goncharov, in particular, for providing this program, as well as assistance

in its use. Their help was vital for carrying out this project.

7



purposes. (The existing experimental analysis [1] was done in LO.)

4.1 Procedure

Our analysis is carried out in several stages.

1. We first fix all of the “conventional” parton parameters to their values in the CTEQ6M

parton distribution set, and fit the complete set of data by varying only the parameters

associated with the new degrees of freedom in s−. We observe that: (i) most of the data sets

used in the previous analysis are not affected at all by the variation in s− (as they should not

be); (ii) a few fully inclusive cross sections are slightly affected by the variation of s− (such

as F3 which depends on u− ū+d− d̄+ s− s̄ . . . ), but the sensitivities are weak; and (iii) the

CCFR-NuTeV dimuon data sets are the most constraining ones for fitting s−. We obtain

good fits using either the 3-parameter (a, b, c) or the 4- or 5-parameter (a, b, c, d, e) versions

of Eqs.(6,7). There is not enough constraint to choose among these. The higher-order

polynomials allow oscillatory behavior of s−(x) which the 3-parameter form does not.

2. Using these candidate fits as a basis, we perform a second round of fitting allowing the

parameters associated with s+, Eq.(5), to vary in addition to the s− ones. This improves

the fit to all data sets slightly. We observe that the shape of s+(x) now deviates from

the starting configuration where s+(x) was set proportional to ū(x) + d̄(x). Defining the

strangeness fraction parameter κ as the ratio of the momentum fraction carried by the

strange quarks, [S+], to that carried by ū + d̄ at Q0 (chosen as Q0 = 1.3 GeV in our study),

we find that κ may vary in the range 0.3 – 0.5; χ2 has a shallow minimum around κ = 0.4.

This value agrees with previous analyses.

Because the experimental constraints are not sufficient to uniquely determine all the

s− and s+ parameters, we categorize several classes of equally good solutions based on such

factors as the number of crossing points of s−(x), and the behavior of s−(x)/s+(x) as x → 0

or x → 1.

3. We finalize these classes of solutions by allowing all parton parameters to vary so that

the non-strange parton distributions can adjust themselves to yield the best fit to all the

experimental data sets. (As one would expect, these final adjustments are generally small.)

The differences in the χ2 values between the various categories of solutions are not significant.

4.2 Central Results

The following description of results is based on a few representative examples chosen from

a large number of candidate fits obtained by the above procedure. The quality of the fits

to the global data sets other than the CCFR-NuTeV dimuon data remains quite similar

to the previous CTEQ6M analysis, so we focus our discussion on the strangeness sector.

Specifically, we examine closely the asymmetry functions s−(x), S−(x) and the momentum

integral [S−]. The asymmetry functions from three typical good fits, with different behaviors

at small x (labeled as classes A,B,C), were previewed in Fig. 2 as illustrations.
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In the accompanying table, for each sample fit we list the small-x exponent β− (s−(x) ∼

xβ−, cf. Eq. 8), the integrated momentum fraction [S−], and the relative χ2 values, nor-

malized to the χ2 of solution B, which we use as the reference for comparison purposes.

(Under column “B”, we give the absolute χ2’s in parentheses.)f To gain some insight on the

constraints on the strangeness sector due to the various types of experiments, we show sepa-

rately the χ2 values for the dimuon data sets, the inclusive data sets (I) that are expected to

be somewhat sensitive to s− (consisting of the CCFR and CDHSW F3(x, Q) and the CDF

W -lepton asymmetry measurements), and the remaining ones (II) that are only indirectly

affected by s− (the rest of the inclusive data sets).

# pts B+ A B C B−

β− - −0.78 −0.99 −0.78 0 −0.78

[S−] × 100 - 0.540 0.312 0.160 0.103 −0.177

Dimuon 174 1.30 1.02 1.00 (126) 1.01 1.26

Inclusive I 194 0.98 0.97 1.00 (141) 1.03 1.09

Inclusive II 2097 1.00 1.00 1.00 (2349) 1.00 1.00

Table 1. Features of the representative parton distribution sets described in the text,

arranged by the order of the value of [S−] from left to right.

Focusing on the three good fits {A,B,C} first, we note the following.

• All three solutions {A,B,C} feature positive [S−]; and the more singular the behavior

of s−(x) as x → 0, the higher the value of [S−]. These are natural consequences of the

strangeness sum rule (equal +/− areas under the curve of s−(x)) and the small x suppression

of the momentum integral, as discussed earlier in Sec. 2.

• Solution B is slightly favored over the other two. This, plus the fact that its small-x

behavior lies in the middle of the favored range, motivates its use as the reference fit.

• We chose these examples among fits with the simplest parametrizations: all cross the x

axis only once. With 4- or 5-parameters, which can allow more than one crossing point,

many solutions can be found that entail oscillatory s−(x). But since the χ2 values are

substantially the same as for the simple case, we deem it premature to dwell on complicated

behaviors, which may be mere artifacts of the parametrization rather than reflections of

physical constraints. Further studies described in Sec. 4.4 reinforce this point.

To show how these fits compare with data, we plot in Fig. 3 the ratio of data/theory

for the reference fit B. The four graphs correspond to the CCFR and NuTeV neutrino and

antineutrino data sets respectively. The data points are sorted in x-bins, and within each

fThe χ2 values of the dimuon data sets, like those of some other data sets, do not carry rigorous statistical

significance, because the correlated systematic errors are not available and, hence, cannot be included. In

the global analysis context, the χ2 value is nevertheless used as the only practical “figure of merit” for the

fit. The relatively small value of the total χ2 for the dimuon data sets, compared to the number of data

points, underlines this fact. Under this circumstance, it is common practice to use the normalized χ2 values

to compare the quality of different fits.
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Figure 3: Comparison of data to fit B.

x-bin, by y value. We see that the quality of the fit is good, within the experimental

uncertainties. There are no significant systematic deviations. (The CCFR antineutrino data

set may appear to be systematically higher than theory. However, upon closer inspection the

difference is not significant. The data points that lie above theory consist mostly of points

with large error bars, which tend to catch the attention of the eye; whereas the fit is actually

dominated by points with small errors, which closely bracket the theory line on both sides.g

The value of χ2/N for this data set is less than 1, comparable to those for the other sets.)

4.3 Range of [S−] by the Lagrange Multiplier Method

Beyond the best fits (A, B, C), we can study the range of [S−] consistent with our global

analysis in a quantitative way by applying the Lagrange Multiplier (LM) method devel-

oped in [14]. By varying the Lagrange multiplier parameter, this method explores the entire

strangeness parameter space in search of solutions with specified values of [S−], i.e., con-

strained fits. The B− solution listed in Table 1 was obtained by forcing [S−] = −0.0018 (a

relatively large negative value, but not as large as the value −0.0027 cited by [5, 7]). The

B+ solution was generated by forcing [S−] to go in the other (positive) direction until the

increment of the overall χ2 became comparable to that of B−; this results in [S−] = 0.0054.

We see from the relevant entries in Table 1 that: (i) the χ2 values of the dimuon data

sets increase by about 30% in both B± fits; (ii) the “inclusive I” data sets disfavor the

negative [S−]; and (iii) the “inclusive II” data sets are completely neutral. These results

gThis becomes apparent if the data points are re-plotted ordered by the size of the error bars.
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are shown graphically in Fig. 4, where the square points represent the (relative) χ2 values of

the dimuon data sets, and the triangle points of the “inclusive I” data sets. (Not shown are

those for the “inclusive II” data sets, which remain flat (at 1.00).) The LM fits are chosen

from a large number of fits spanning the entire strangeness parameter space. The pattern of

dependence of the χ2 values for the dimuon data sets on the value of [S−] is nearly parabolic.

This is clear evidence that the dimuon measurement is indeed sensitive to the strangeness

asymmetry as expected. Further discussion of this observation, including the contrast to the

sensitivity of other experiments, will be given in Sec. 4.4.
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Figure 4: Correlation between χ2 values and [S−].

We see from Fig. 4 that, in this series of fits, the dimuon data sets favor a range of [S−]

centered around 0.0017, whereas the “inclusive I” data sets disfavor negative values of [S−].

Taken together, a reasonable allowed range for [S−] might be estimated to be 0.001 – 0.003,

although a value of zero (no strangeness asymmetry) is not necessarily ruled out. Large

negative values of [S−] are clearly disfavored; cf. also Table 1.

The parton distribution functions associated with the sample sets listed in Table 1 will

be available on the CTEQ web page (http://cteq.org).

4.4 Additional Sources of Uncertainties

The most obvious weak link of the current analysis is that the comparison of neutrino dimuon

data to QCD theory of charm production still depends on a LO model calculation of the

fragmentation and decay processes. This weak point should be remedied in the next round

of more refined analysis. For the current work, we have performed three series of studies to

assess the reliability of our main results.

Pure Leading Order Fits Since the experimental analyses of the CCFR-NuTeV dimuon

data have been done in LO QCD [1, 7], we have carried out a whole series of purely LO
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global analyses, following the same procedures as outline above, in order to provide a basis

for comparison. The results can be summarized as follows.

• The overall χ2 for the global fit increased by ∼ 200 over the comparable fits described

above; while the χ2’s for the dimuon data sets actually decreased slightly. This is not

surprising, since the current state of global analysis, with precision data from many exper-

iments, requires the use of NLO QCD theory. On the other hand, the new dimuon data

still have comparably large experimental errors, such that an LO fit is adequate for them.

• We explored the allowed range of strangeness asymmetry [S−] in this LO study under

different assumptions on the x → 0 and x → 1 behavior of the s+(x) and s−(x) functions.

First, we found that the χ2
dimuon vs. [S−] curves are again close to parabolic, and are rather

similar to that of Fig. 4. The widths of the parabolas are comparable to that of Fig. 4; the

center of the parabolas wanders within the range 0 < [S−] < 0.0015.

• We also found that the χ2
inclusive I vs. [S−] curves, while generally flatter, do “flop around”

enough so that no clear pattern can be discerned. The specific shape of this curve shown

in Fig. 3 is not a common characteristic of these fits.

Charm Mass Dependence The CCFR-NuTeV dimuon analysis treated the charm mass

as one of the fit parameters. Their analyses favored a rather high value of mc = 1.6GeV

(compared to, e.g., the PDG estimate of 1.0 GeV < mc < 1.4 GeV). The CTEQ global

analyses are usually done with a fixed value of mc = 1.3 GeV. To see whether the comparison

between our results is strongly influenced by the choice of the charm mass, we have performed

several series of fits with mc varying from 1.3 GeV to 1.7 GeV. Again, the general features,

as described above, stay the same. The central value of [S−] does vary with the choice of

mc within a given series of fits, but the pattern is not universal. The range over which the

central value wanders is of the order ∼ 0.0015, comparable to the width of the parabola in

Fig. 4. Unlike the specific analysis of CCFR-NuTeV, the overall χ2 for the global analysis

does favor a lower value of mc.

Dependence on Decay and Fragmentation Model To estimate the dependence of

our results on the model used to convert the measured dimuon cross sections to structure

functions for charm production, we repeated our analyses using an alternative conversion

table provided by the CCFR-NuTeV collaboration.h This alternative table is based on

Buras-Gaemers PDFs used in CCFR-NuTeV analyses with Collins-Spiller fragmentation

functions. It is similarly tuned to detailed features of the measured dimuon cross sections as

that described in Sec. 4.1.i The results obtained from the alternative fits are, again, similar

to those described earlier: the χ2
dimuon vs. [S−] parabola has about the same width; and the

hWe thank Kevin MacFarland for supplying this table.
iHowever, since our CTEQ6-like PDFs are rather different from the CCFR Buras-Gaemers PDFs, it is

not clear how good the approximation is to use this conversion table. That is, the self-consistency of the

procedure is not assured.
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central values are in the range 0 < [S−] < 0.0015—slightly to the left of that in Fig. 4, but

within the estimated range. The χ2
inclusive I vs. [S−] curves are rather flat, with no definite

shape.

Taken together, the results of the additional studies described in these three paragraphs lead

to several conclusions. (i) The general features described in Secs. 4.2 and 4.3 are robust. (ii)

The central value of [S−] wanders around within a range that is consistent with the width

of the χ2
dimuon vs. [S−] parabola. (iii) Taking into account these shifts, we believe a realistic

estimate of the range of uncertainty of the strangeness asymmetry is

−0.001 < [S−] < 0.004 . (9)

This large range reflects both the limit of current experimental constraints and the consider-

able theoretical uncertainty, as explicitly discussed in the text. The theoretical uncertainties

can be reduced in a refined NLO analysis; the results remain to be seen. The limitations on

the experimental constraints will remain, until new experiments are done .

5 Comparisons to previous studies

A comprehensive global QCD analysis with emphasis on the strangeness sector has been

carried out previously by BPZ [3].j Without the dimuon data, which are directly sensitive

to strangeness, the results of BPZ implicitly rely on small differences between large neutral-

and charged-current inclusive cross sections from different experiments. The latest represen-

tative s−(x) and S−(x) functions extracted by BPZ (the more recent solution “with CCFR

(inclusive data)”) are shown in Fig. 1, along with our reference fit B. The main feature of the

BPZ curves is a positive bump at rather large x.k This feature has been attributed to the

influence of the CDHSW data, particularly when re-analyzed at the cross section level along

with the other DIS experiments. Their conclusion that data favor a positive value of the

momentum integral [S−] is in general agreement with our detailed study based on the LM

method. However, the different shapes of s−(x) seen in Fig. 1 clearly underline the difference

in inputs: (i) our results are mainly dictated by the CCFR-NuTeV dimuon data (which

are not present in the BPZ analysis); (ii) their results rely on a delicate analysis of DIS

cross-section data (not matched in our structure function analysis); and (iii) the difference

of flexibility of the parametrizations of the non-perturbative input functions can influence

the results.

jAs mentioned in Sec. 4, BPZ work directly with DIS cross sections (instead of structure functions), with

detailed attention to systematic errors and other sources of uncertainties.
kThe original “without CCFR” solution in [3] has an even more pronounced large-x bump and a smaller

negative region. An s−(x) function of such magnitude at large x appears to be incompatible with the dimuon

data, and it would make s(x) and s̄(x) behave quite differently than the non-strange sea quarks and the

gluon, i.e., ∼ (1 − x)p, with p in the range 5 − 10.
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The CCFR and NuTeV collaborations performed separate and combined analyses of s

and s̄ [1], based on their own dimuon and inclusive cross sections. To parameterize the s(x)

and s̄(x) distributions, they chose the model formula

(

s(x, Q)

s̄(x, Q)

)

=
ū(x, Q) + d̄(x, Q)

2

(

κ(1 − x)α

κ̄(1 − x)ᾱ

)

(10)

for all {x, Q}, where κ, κ̄, α, ᾱ are fitting parameters.

Curves representing the general behavior of the model (10) at Q2 = 10GeV2, with

parameter values (κ, κ̄, α, ᾱ) taken from [1], have been shown in Fig. 1 for comparison with

the other distributions. While this model might be acceptable for a limited range of x and

Q, it leads to serious problems in general: (i) the strangeness number sum rule [s−] = 0 is

badly violated (in fact, the integral [s−] diverges unless κ = κ̄), as is the momentum sum

rule, Eq. 4; (ii) the QCD evolution equation is violated at LO.l The first problem can be

clearly seen in Fig. 1.m

It could be argued that, since the experiment only covers a limited range of x, the

enforcement of the sum rules is not critical in extracting limited information on s(x, Q)

and s̄(x, Q). If this point is approximately correct, then the CCFR curve in Fig. 1 implies

negative s−(x) over most of the experimental x range (0.01 – 0.3).n The uncertainty is

smaller at the lower x end because of better statistics. It is this feature of the data that we

invoked in the general discussion of Sec. 2.

To describe the behavior of s−(x) over the full x range, the strangeness number sum

rule must be enforced. It also provides a powerful theoretical constraint to the data analysis,

as demonstrated in Secs. 2 and 4. Functions that fail to satisfy the sum rules or the QCD

evolution equations cannot be true candidates for the universal parton distributions of the

PQCD formalism that are required to make predictions for other processes.

6 Conclusion

We find several classes of solutions in the strangeness sector that are consistent with all

relevant world data used in the global analysis. The dimuon data are vital in constraining

the strangeness asymmetry parameters. The constraints provided by other inclusive mea-

surements, labeled as “inclusive I” in the text, are consistent with those provided by dimuon

data, although much weaker. The allowed solutions generally prefer the momentum integral

lThese problems have nothing to do with whether LO or NLO QCD formulas are applied to the non-

strangeness sector. They remain in the “NLO” CCFR-NuTeV analysis [7, 15].
mRe-analysis of the CCFR-NuTeV data by the experimental group, taking into account these issues, are

underway. Initial results from partial implementations of the above-mentioned theoretical constraints were

reported by P. Spentzouris at International Workshop on Weak Interactions and Neutrinos 2003 (WIN03),

Lake Geneva, October, 2003.
nThis is consistent with the fact that (without the constraint of sum rules) [7] quotes [S−] = −0.0027±

0.0013.
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[S−] ≡
∫ 1

0
x[s(x) − s̄(x)] dx to be positive. This conclusion is quite robust, and it follows

from the basic properties of PQCD and from qualitative features of the experimental data.

However, the size of this strangeness momentum asymmetry is still quite uncertain; we can

only estimate that [S−] lies in the range from −0.001 to +0.004. The Lagrange Multiplier

method explicitly demonstrates that both the dimuon data and the “inclusive I” data sets

strongly disfavor a large negative value of [S−], although they may still be consistent with

zero asymmetry.

The fact that [S−] has a large uncertainty has significant implications for the precision

measurement of the weak mixing angle, sin2 θW , from neutrino scattering. This issue is

studied separately in Ref. [16].

This paper marks the first global QCD analysis incorporating direct experimental con-

straints on the strangeness sector. We have so far focused only on the strangeness asymmetry,

which represents a new frontier in parton degrees of freedom. Much still needs to be done to

improve the treatment of the dimuon data (to true NLO accuracy), and to fully explore all

the degrees of freedom associated with s+(x) and s−(x). As progress is made on these fronts,

the uncertainty on [S−] will no doubt decrease as well. Results of these further studies will

be reported as they become available.
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