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An Escapade In the Tails of
the Gaussian

-R. Kellogg

The Fundamentals behind Averaging

e consider the simplest possible situation
e aparent gaussian of zero mean and unit
standard deviation

Let’s say we sample this distribution by taking a
pair of measurements

Everyone knows:

<%>:<xl—x2>= 0

<(x1 - x2)2> =2

but (on the basis of a small statistical sampling)
not everyone knows...



e That

(5]

where Sis any subsample
chosen on the basis of x; — X,

even way out in thetails |% —X,|>30,_,
where ¢, is the standard deviation of
the difference (o,., =2
e Thisisthe marvelous (and somewhat
surprising) foundation which supports the
validity of averaging over arbitrarily large
discrepancies

~. S0, those who favor rigorous, straight averaging
areright...



.... Aslong as the parent distribution is a pure
gaussian.

¢ | have always known this, and have never
argued otherwise

e The problem comes down to a paradox

The (second) Statistical Paradox

e Everyone knows that all real error distributions
are only approximately gaussian

e Everyonetreats al errorsformally asif they
were perfect gaussians

Moving out in the Tail

e Consider agaussian + a 1% per ¢ flat tail out
tofiveo

¢ (you can call thisKellogg's Distribution, if
you like)



gaussians with and without tails
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e yes, you can seethesetails

e but would atypical error assessment be
sensitive to them?

(note, here and in subsequent figures the shaded histogram is
Kellogg' s Distribution, the unshaded histrogram is a pure
gaussian. The statistics correspond to Kellogg' s distribution.)




gaussians with and without tails
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e thedistribution of differences (x; —X,) looks
pretty gaussian




gaussians with and without tails
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the unbiased distribution of pair-wise averages

Xt X%
2

also looks pretty gaussian

(good enough for government work, anyway, aswe
used to say at Brookhaven L ab)



gaussians with and without tails
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but after requiring %, — %,| > 30,_, things start to
look abit sick

M echanisms

e gaussian tails drop off so fast that “discrepant
pairs’ are dominated by “one from each wing”

o if thetailsdrop off more dowly “peak + tail”
becomes dominant




Conseguences

e Prolog

- “Kellogg’ s Distribution” is purely
IHustrative

(any quantitative resemblance to the
sin“0 discrepancy is purely intentional)

- nevertheless.....
It takes a stronger-than-average error analysisto
differentiate even much more radical error
distributions from a gaussian
e My Basic Points
A)  The*gaussian myth” isharmless &
justified where there is no significant
discrepancy
(the core is a safe place for every-day life)
B) Taking a gaussian average over a
significant discrepancy isin fact radical,

rather than conservative

(Kellogg isaradical conservative, if you like)



x 107

9000 |
8000 [
7000
5000
5000 |
4000

3000

2000

1000 |-

O L L L
0.229 0.23 0.237 0.232 0.233 0.234 0.235

ideogram for the six sin2 measurements

Thisis an ideogram alathe PDG for the sin“0
measurement summer 2001 (added after the talk)

The shaded band gives the gaussian average




