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An Escapade in the Tails of
the Gaussian

-R. Kellogg

The Fundamentals behind Averaging

• consider the simplest possible situation
• a parent gaussian of zero mean and unit

standard deviation

Let’s say we sample this distribution by taking a
pair of measurements

Everyone knows:
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but (on the basis of a small statistical sampling)
not everyone  knows…



• That
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where S is any subsample
chosen on the basis of x1 – x2

even way out in the tails  x x1 2 1 23− > −σ
where σ1-2 is the standard deviation of
the difference σ1 2 2− =( )

• This is the marvelous (and somewhat
surprising) foundation which supports the
validity of averaging over arbitrarily large
discrepancies

∴∴∴∴ So, those who favor rigorous, straight averaging
are right…



…. As long as the parent distribution is a pure
gaussian.

• I have always known this, and have never
argued otherwise

• The problem comes down to a paradox

The (second) Statistical Paradox
• Everyone knows that all real error distributions

are only approximately gaussian

• Everyone treats all errors formally as if they
were perfect gaussians

Moving out in the Tail

• Consider a gaussian + a 1% per σ flat tail out
to five σ

• (you can call this Kellogg’s Distribution, if
you like)



• yes, you can see these tails

• but would a typical error assessment be
sensitive to them?

(note, here and in subsequent figures the shaded histogram is
Kellogg’s Distribution, the unshaded histrogram is a pure
gaussian.  The statistics correspond to Kellogg’s distribution.)



• the distribution of differences (x1 – x2) looks
pretty gaussian



the unbiased distribution of pair-wise averages
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also looks pretty gaussian

(good enough for government work, anyway, as we
used to say at Brookhaven Lab)



but after requiring x x1 2 1 23− > −σ  things start to
look a bit sick

Mechanisms

• gaussian tails drop off so fast that “discrepant
pairs” are dominated by “one from each wing”

• if the tails drop off more slowly “peak + tail”
becomes dominant



Consequences

• Prolog

- “Kellogg’s Distribution” is purely
illustrative

(any quantitative resemblance to the
sin2θ discrepancy is purely intentional)

- nevertheless…..

it takes a stronger-than-average error analysis to
differentiate even much more radical error
distributions from a gaussian

• My Basic Points

A) The “gaussian myth” is harmless &
justified where there is no significant
discrepancy

(the core is a safe place for every-day life)

B) Taking a gaussian average over a
significant discrepancy is in fact radical,
rather than conservative

(Kellogg is a radical conservative, if you like)



This is an ideogram á la the PDG for the sin2θ
measurement summer 2001 (added after the talk)

The shaded band gives the gaussian average


