Higgs searches at LEP: Beyond the SM and MSSM models

Pauline Gagnon Indiana University

PASCOS'03 – January 2003

Where oh where's my underwear? Where oh where can they be? I can't find them anywhere

They must be hiding from me...

PASCOS'03 – January 2003

Have we looked everywhere?

Done so far:

- Fermiophobic and invisible decays
- Yukawa couplings
 - Charged and doubly-charged Higgs searches
- Flavour and decay-mode independent searches
- Low m_A search
- Anomalous Higgs couplings
- 2HDM interpretations

PASCOS'03 – January 2003

Extensions to SM and MSSM Standard Model predicts one Higgs doublet: \Rightarrow one physical state: H⁰ Simplest extension: 2HDM with 5 physical states: 2 CP-odd: h^0 , H^0 1 CP-even: A^0 2 charged : H[±] H^o the heaviest: not expected at LEP 2HDM Type I: one doublet couples to fermion; one to bosons 2HDM Type II: one doublet couples to up-type (v,u,c,t) one doublet couples to down-type (l[±],d,s,b) (MSSM is a special case of 2HDM Type II) Another possibility: one couples to leptons, one to quarks Higgs triplets models \Rightarrow H++ PASCOS'03 – January 2003 Pauline Gagnon – Indiana University

Higgs production and decay at LEP

3 Higgs production modes at LEP:

Higgsstrahlung

2HDN

pair production

Yukawa production

Л:	$\mathrm{e^+e^-} ightarrow \mathrm{h^0Z^0}$	•	$\sigma_{ m hZ} = \sin^2(eta-lpha) \; \sigma_{ m HZ}^{ m SM}$
	${ m e^+e^-} ightarrow { m h^0A^0}$	(●2) 1■()	$\sigma_{ m hA} = \cos^2(eta - lpha) \; ar{\lambda} \; \sigma_{ m HZ}^{ m SM}$

 $\bar{\lambda}$: accounts for suppression of P-wave near threshold

Couplings to fermions depend on the mixing angle α between the two doublets and $\tan\beta = v_2/v_1$

Fermiophobic Higgs decays

- SM allows $H^0 \rightarrow \gamma \gamma$ only at one-loop level (BR $\leq 10^{-3}$)
- Several models predict bosonic Higgs couplings
- In 2HDM(I), one doublet couples to bosons only

Benchmark fermiophobic Higgs boson: SM production σ with fermionic BR turned off $\Rightarrow \sigma(h^0Z)^*BR(h^0 \rightarrow \gamma \gamma)$ becomes sizeable

Combined LEP data for BR($h^0 \rightarrow \gamma \gamma$) in h^0Z events

Mass limit: 109.7 GeV (fermiophobic benchmark scenario)

OPAL general fermiophobic search

Search for $e+e- \rightarrow XY$ for $\sqrt{s} = \{205-207\}$ GeV For X: scalar $X \rightarrow \gamma \gamma$ Y: scalar or vector Y \rightarrow ff (qq, II, vv) Set limits on $\sigma(XY) *$

 $\mathsf{BR}(\mathsf{X} \to \gamma \gamma) * \mathsf{BR}(\mathsf{Y} \to \mathsf{ff})$

Search for h^0Z : $h^0 \rightarrow WW$, ZZ at L3

PASCOS'03 – January 2003

Fermiophobic LEP searches

Delphi: search for h⁰Z⁰ and h⁰A⁰ $\rightarrow \gamma \gamma \gamma \gamma \gamma$ Phys. Lett. B507 (2001) 89. • Opal: search for $e+e- \rightarrow XY$, and $X \rightarrow \gamma \gamma$ Phys. Lett. B544 (2002) 44. **L3:** hZ with $h^0 \rightarrow WW$, ZZ: CERN-EP/2002-080 $h^0 \rightarrow \gamma \gamma$ Phys. Lett. B534 (2002) 28. Aleph: Phys. Lett. B487 (2000) 241 **LEP combined h⁰Z with h⁰** $\rightarrow \gamma \gamma$: LHWG Note/2002-02

Invisible Higgs decay: $h^0 \rightarrow \chi^0 \chi^0$

a na ana amin'ny tanàna mandritry mandritry mandritry dia kaominina mandritry dia mampikambana amin'ny faritr'

- Dominant invisible Higgs decays possible in
- Majoron models
- Supersymmetric models depending on parameters choice
- h detected via associated Z: acoplanar jets or dileptons

Zh: $h \rightarrow \chi^0 \chi^0$ $Z \rightarrow l^+l^-, qq$

Combined LEP data for $h^0 \rightarrow \chi^0 \chi^0$

Experiment:	ALEPH	DELPHI	L3	OPAL
Integrated luminosity in 2000 (pb^{-1}) :	215.6	225.1	217.3	210
Backg. predicted / Evts. observed				
Acoplanar jets:	8.17 / 8	35.9 / 30	56.2 / 50	61.8 / 47
Acoplanar leptons:	6.7 /7	21.7 / 13	5.9 / 9	_
Events in all channels	14.9 /15	57.6 / 43	62.1 / 59	61.8 / 47
Median 95% CL Limit (GeV/c^2) :	112.6/111.8	110.7/110.7	110.2/110.1	$107.4^*/108.5$
Observed 95% CL Limit (GeV/c^2) :	114.1/113.1	113.0/113.0	107.6/107.5	107.0/107.4

test statistics: -2 ln Q: a negative value would indicate a signal

mass limit: 114.4 GeV

Latest publications on $h^0 \rightarrow \chi^0 \chi^0$

Aleph: Phys Lett B526 (2002) 191
Delphi: 2002-025-CONF-559 (ICHEP 2002)
L3: Note #2690 (EPS 2001)
Opal: Physics Note #472 (ICHEP 2002)
LEP combined: hep-ex/0107032 – Summer 2001

Higgsstrahlung

pair production

Yukawa production

Yukawa process could dominate if:

- Higgsstrahlung is suppressed (mixing of 2 doublets in 2HDM)
- pair production impossible if $m_A + m_h > \sqrt{s}$

Scenario possible in general 2HDM model

PASCOS'03 – January 2003

Cross-section of Yukawa process

 $\sigma_{Yukawa} \propto m_{f}^{2} N_{c} \xi_{f}^{2}$

N_c: color factor

 ξ_f : enhancement factor

	down-type	up-type
ξ_{f}	ξd	ξu
A	tan β	1/tan β
h	- sin α /cos β	$\cos \alpha$ /sin β

<u>Two possible cases:</u> ■ For ξ_d < 1: ξ_u > 1

cc radiates Higgs

For ξ_d > 1:

b b radiates Higgs A/h $\rightarrow \tau \tau$ or bb

Only LEP I data: σ(bb)_{LEP I} = 100 * σ(bb)_{LEP II}

PASCOS'03 – January 2003

Decay signature in Yukawa production

 Opal search channel: e⁺e⁻ → b b A/h⁰
 A/h⁰ → τ τ

 Higgs emitted at high energy: decay products constrained to one single jet

Opal results on Yukawa couplings

95% CL on ξ_d in 2HDM type II model

a) for CP-odd A⁰b) for CP-even h⁰

Eur. Phys. J. C23 (2002) 397

Delphi search: more general

Search modes:

 $A/h^0 \rightarrow \tau \tau \text{ or } b \ b$ $b \ b \ \tau \tau \text{ and } b \ b \ b \ b$

Search for $h^0A^0 \rightarrow \tau \tau \tau \tau$ at Delphi

Possible in 2HDM if one doublet couples only to leptons

- Look for 4 narrow, low-multiplicity jets
- Look in 2, 3, 4-jets events
- m_A = [4-170] GeV
- m_h = [4-90] GeV

Signal efficiency: 21% - 58.6%

observed	expected
in data	from SM
6 events	9.5 events

see Delphi 2002-037-CONF-571 ICHEP 2002 (still preliminary)

PASCOS'03 – January 2003

Charged Higgs

Predicted by 2-doublet extensions of SM

- Production mechanism: $e^+e^- \rightarrow H^+H^-$
- In MSSM, at tree level
 m_{H+} > m_{W+}
- m_{H+} < m_{W+} barely allowed by MSSM but possible with R-parity violation

Assume all decays to be $H^+ \rightarrow cs$ and $\tau^+ \nu$:

- $H^+H^- \rightarrow \tau^+ \nu \tau^- \nu$
- $H^+H^- \rightarrow cs \tau v$
- $H^+H^- \rightarrow cs cs$

H+H- signal implies beyond MSSM physics

L3 excess at $m_{H+} = 68 \text{ GeV}$

Slight excess seen in 189-202 GeV data
 Mass limits then were between 67.4-79.9 GeV depending on BR(H⁺ → τ⁺ν) Excess most significant for low BR(H⁺ → τ⁺ν)

	$\tau^+ \nu \tau^- \nu$	cs tv	cs cs
data	44	171	961
bgnd	49.8	171.8	883.3

No signal elsewhere in m_{H+}

Combined LEP limits on m_{H+}

 No signal elsewhere at 68 GeV even emulating L3 analysis
 No flaws found in L3 analysis despite great scrutiny

Interpreted as a 4.2 σ **background fluctuation**

CHARGED HIGGS - PRELIMINARY

Latest publications on H⁺

 Aleph: CERN-EP-2002-054
 L3: Note 2686 - (EPS 2001)
 Opal: PN509 - (ICHEP 2002)
 LEP: Summer 2001 hep-ex/0107031
 Delphi: 2002-038-CONF-572 (ICHEP 2002)

includes $H^{+} \rightarrow W^{*}A \implies$

Search for doubly charged Higgs

- Exist in two Higgs triplet models
- At tree level, H⁺⁺ only couples to charged leptons and gauge bosons
- Production mode: $e^+e^- \rightarrow H^+ + H^{--}$
- Occur naturally in left-right symmetric models
 - these allow small neutrino masses
 - $\sigma (e^+e^- \rightarrow H_R^{++}H_R^{--}) \neq \sigma (e^+e^- \rightarrow H_L^{++}H_L^{--})$
 - Do not conserve baryon and lepton number

Decay characteristics for H++

• $H^{++} \rightarrow I^+ I^+$, $I = e, \mu, \tau$

- Search for events with 4 leptons + missing energy (if I = τ)
- $\Gamma(H^{++} \rightarrow \tau \tau) \propto h_{\tau\tau}, m_{H^{++}}$ $h_{\tau\tau}$: Yukawa coupling
- H⁺⁺ lifetime ~ zero for $h_{\tau\tau} > 10^{-7}$
- Long-lived if $h_{\tau\tau} < 10^{-7}$

	Delphi	Opal
Ecm (GeV)	189-209	189-209
total int. L	570 pb ⁻¹	614 pb ⁻¹
h _{ττ} > 10 ⁻⁷	m _H >99.6	m _H >98.5
h _{ττ} < 10 ⁻⁹	m _H >99.3	

Delphi: CERN-EP/2002-077 OPAL: Phys. Lett. B526 (2002) 221

Flavour-independent searches

 Higgs to bb coupling can be suppressed in 2HDM, MSSM and composite models
 Would have been missed if h couples to any quark

Repeat SM searches without b-tag except for the 4-jet channel: add constraints to reduce background

All LEP experiments have searched for HZ in qqqq, qqvv, qq I+I channels where q = any flavour

PASCOS'03 – January 2003

LEP mass and cross-section limits

h^0A^0 channel at Delphi with $A^0 \rightarrow 4g$

- Gluon jets have higher multiplicity than quark jets
- Search topologies:
- 1) 4-jet: if $m_A \sim m_h$,
- 2) 3-jet: if m_h or m_A light
- 3) 3-jet + high thrust: ifboth are light

Low mA search at OPAL

Low m_A region not explored in MSSM

This is where m_A is below the bb threshold

h^0Z^0 topology with $h^0 \rightarrow A^0A^0$

2HDM interpretations

Re-interpretation of all MSSM data in the framework of 2HDM

Done at OPAL for 2HDM Type II

EPJC 18 (2201) 425 and OPAL PN475

Soon to be redone with all LEP data

Scan the parameter space for (m_A, m_h, tan β , α)

2HDM interpretation at OPAL

For specific values of α **OPAL PRELIMINARY** [140 [120] [120] [100] [100] [100] [GeV] $0.4 \le \tan\beta \le 58$ $0.4 \le \tan\beta \le 1.0 \text{ (b)}$ (a) \square 1.0 < tan $\beta \leq 58$ **E**^{₹100} expected $\alpha = \pm \pi/2$ $\alpha = \pi/4$ m_h [GeV] m_h [GeV] $\begin{bmatrix} 140 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ 5 140 5 120 (**d**) **E**^{< 100}

m_h [GeV]

For any value of α

OPAL PRELIMINARY

Pauline Gagnon – Indiana University

PASCOS'03 – January 2003

m_h [GeV]

Anomalous couplings at L3

PASCOS'03 – January 2003

But if we find a Higgs, we'll see it everywhere

PASCOS'03 – January 2003