Tests of the Standard Model and constraints on new physics from

# Fermion-pair production at LEP2

Georgios Anagnostou

INP Demokritos Athens/Birmingham University

HEP 2003 , Europhysics Conference in Aachen, Germany, July 2003

# Outline

- Photon radiation signal definition
- Test of the SM xsections, Afb, Rq's

Constraints on new physics :

- Contact interaction
- Z' bosons
- Low scale gravity

# Photon Radiation - Radiative return to Z

• General feature of  $e^+e^- \rightarrow f \overline{f}$ : often radiation of an initial state photon decreases effective collision energy  $\int s'$ 

• if  $\int s'$  close to Z peak more likely to interact  $\rightarrow$  significant enhancement of xsection - Radiative return to Z.





• Photon radiation complicates signal definition: Initial/Final state photons cannot be cleanly separated .

•LEP signal definition for reduced collision energy  $\int s'$ : mass of schannel propagator with ISR-FSR interference subtracted so mass is unambiguous.

# Photon Radiation - Signal definition



Data sample divided into

- non-radiative  $\int s' / \int s > 0.85$ .
- inclusive events  $\int s' / \int s > 0.01$ .

• LEP combinations and new physics searches only for high energy sample.

• Radioactive events peak at  $\int s' \sim M_z$  used for independent beam energy measurement.

EPS Aachen, July 2003

# LEP combinations

• Preliminary combinations for xsections  $\sigma_{\mu\mu}$ ,  $\sigma_{\tau\tau}$ ,  $\sigma_{had}$  and asymmetries  $A_{FB(\mu\mu)}$ ,  $A_{FB(\tau\tau)}$  as well as  $d\sigma/dcos\Theta$ 's and  $R_{b/c}$ ,  $A_{FBb/c}$ .

• Individual measurements performed with slightly different signal definitions  $\rightarrow$  corrections applied to derive results in common signal definition.

• Careful attention to correlated systematics  $\rightarrow$  systematic error broken down in parts according to correlations between channels, experiments.

• Averaging for xsections-asymmetries performed using **BLUE technique**.

Perhaps you already guess ..

In general good agreement between SM and data ( $\chi^2$ /d.o.f ~ 160/180). Largest difference : Hadronic xsection slightly higher than expectation (~1.7 $\sigma$ ).

#### Cross-sections & Asymmetries



EPS Aachen, July 2003

#### Differential cross-sections - µµ, TT





EPS Aachen, July 2003

# Heavy Flavours: R<sub>b</sub>, A<sub>FBb</sub>, R<sub>c</sub>, A<sub>FBc</sub>





# Contact Interactions (I)

-Convenient parameterisation of new physics due to composite guark & leptons OR due to the exchange of heavy boson with  $m_X \gg Js$  .

-Lagrangian has additional term:

$$L_{eff} = \frac{g^2}{(1+\delta)\Lambda^2} \sum_{i,j=L,R} \eta_{ij} (\overline{e_i} \gamma_\mu \overline{e_i}) (\overline{f_j} \gamma_\mu f_j)$$

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\cos\theta} = A(s,t) + B(s,t)\,\varepsilon + C(s,t)\,\varepsilon^2, \ \varepsilon = \frac{1}{\Lambda^2}$$

| Model          | LL | RR | LR | RL | VV | AA      | V0 | A0 |
|----------------|----|----|----|----|----|---------|----|----|
| $\eta_{ m LL}$ | ±1 | 0  | 0  | 0  | ±1 | ±1      | ±1 | 0  |
| $\eta_{ m RR}$ | 0  | ±1 | 0  | 0  | ±1 | ±1      | ±1 | 0  |
| $\eta_{ m LR}$ | 0  | 0  | ±1 | 0  | ±1 | <b></b> | 0  | ±1 |
| $\eta_{ m RL}$ | 0  | 0  | 0  | ±1 | ±1 | <b></b> | 0  | ±1 |

- $\eta_{ij}$  describes chiral structure of the model
- $-\Lambda$  energy scale of new physics
- g unknown coupling

 $\delta = \begin{cases} 1 & \text{for } e^-e^+ \rightarrow e^-e^+ \\ 0 & \text{otherwise} \end{cases}$ 

-Fit  $\varepsilon$  (having set  $q^2/4\pi=1$ )

- limits  $\Lambda^+$ ,  $\Lambda^-$  correspond to constructive, destructive interference with SM.

# Contact Interactions (II)





EPS Aachen, July 2003

# Extra Z' Boson

- If SM embedded into a larger gauge group  $\rightarrow$  new heavy gauge boson, some of which will be neutral  $\rightarrow$  Z'.

-In general Z' could mix with Z<sup>0</sup>, mixing parameterized by angle  $\theta_E$ :

$$\begin{pmatrix} Z \\ Z' \end{pmatrix} = \begin{pmatrix} \cos \Theta_{\rm E} & \sin \Theta_{\rm E} \\ -\sin \Theta_{\rm E} & \cos \Theta_{\rm E} \end{pmatrix} \begin{pmatrix} Z^{0} \\ Z^{0'} \end{pmatrix}$$

| Model | Mixing                 |  |  |
|-------|------------------------|--|--|
| χ     | $\Theta_{\rm E}=0$     |  |  |
| ψ     | $\Theta_{\rm E}=\pi/2$ |  |  |

EPS Aachen, July 2003 -Example: E(6) GUT E(6)→ SO(10) × U(1)<sub>X</sub>  $\downarrow$  SU(5) × U(1)<sub>Y</sub>  $\downarrow$  SU(3)<sub>C</sub> × SU(2)<sub>L</sub> × U(1)

- Two additional gauge groups introduced.

- In general  $Z^{o'}$  will be a mixed state of  $Z_{x'}$ ,  $Z_{y}$ 

$$Z^{0'} = Z_{\Psi} \sin \Theta_{E6} + Z_{X} \cos \Theta_{E6}$$

- Also Sequential  $SM \rightarrow Z'$  has same couplings to fermions as Z.
- Left Right symmetric model (LR)  $\rightarrow$  introduce additional SU(2)<sub>R</sub> symmetry.

# Extra Z' Boson (II) - Exclusion contours



EPS Aachen, July 2003

# Extra Dimensions - Low scale Gravity (I)

The two seemingly fundamental energy scales in nature  $M_{EW}$  and  $M_{Pl} \sim G_N^{-1/2}$  have a ratio of  $10^{-15}$  hierarchy problem.

• While ElectroWeak interactions have been tested experimentally at distances  $M_{EW}^{-1}$ , gravity tested only in the ~mm range.

• Assumption:  $M_{EW}$  is the only fundamental short range scale in nature, even for gravity.

Assume,  $M_{Pl(4+n)} \sim M_{EW}(10^3 GeV)$   $n=1 \rightarrow R\sim 10^{13} cm$   $n=2 \rightarrow R\sim 100 \mu m-1 mm$ n=3...

1. (D=4) V(r)= 
$$G_N \frac{m_1 m_2}{r}$$
,  $G_N = M_{Pl(4)}^{-2}$   
2. (D=n+4) a) V(r)  $\sim \frac{m_1 m_2}{M_{Pl(n+4)}^{n+2}} \frac{1}{r^{n+1}}$ ,  $r \ll R$ 

**b)** V(r) 
$$\sim \frac{m_1 m_2}{M_{Pl(n+4)}^{n+2} R^n} \frac{1}{r} , r >> R$$

(1) & (2b) must look the same

$$- M_{Pl(4)}^2 \sim M_{Pl(n+4)}^{n+2} R^n$$

# Extra Dimensions - Low scale Gravity (II)



# Conclusions

• Results from 4 LEP experiments consistent and in good agreement with each other.

 $^{\bullet}$  Preliminary combined results for xsections, asymmetries and  $R_q{}^{\prime}s$  are in good agreement with SM expectations.

• Used to set limits to new physics depending on the model:

- contact interactions in the range 1.5-19.7 TeV.
- Z' from 0.34-1.787 TeV.
- low scale gravity  $M_s > 1.2$  TeV ( $\lambda$ =+1), 1.09 TeV ( $\lambda$ =-1).

• Final results now starting to appear. When available perform combinations and limit's extraction again using same methods.

# Back-up slides

#### Differential cross-sections - Bhabhas



**July 2003** 

# Contact Interactions (III)





# Extra Dimensions - Low scale Gravity (III)



EPS Aachen, July 2003